In the mathematics of graph drawing, Turán's brick factory problem asks for the minimum number of crossings in a drawing of a complete bipartite graph. The problem is named after Pál Turán, who formulated it while being forced to work in a brick factory during World War II.
A drawing method found by Kazimierz Zarankiewicz has been conjectured to give the correct answer for every complete bipartite graph, and the statement that this is true has come to be known as the Zarankiewicz crossing number conjecture. The conjecture remains open, with only some special cases solved.
During World War II, Hungarian mathematician Pál Turán was forced to work in a brick factory, pushing wagon loads of bricks from kilns to storage sites. The factory had tracks from each kiln to each storage site, and the wagons were harder to push at the points where tracks crossed each other. Turán was inspired by this situation to ask how the factory might be redesigned to minimize the number of crossings between these tracks.
Mathematically, this problem can be formalized as asking for a graph drawing of a complete bipartite graph, whose vertices represent kilns and storage sites, and whose edges represent the tracks from each kiln to each storage site.
The graph should be drawn in the plane with each vertex as a point, each edge as a curve connecting its two endpoints, and no vertex placed on an edge that it is not incident to. A crossing is counted whenever two edges that are disjoint in the graph have a nonempty intersection in the plane. The question is then, what is the minimum number of crossings in such a drawing?
Turán's formulation of this problem is often recognized as one of the first studies of the crossing numbers of graphs.
(Another independent formulation of the same concept occurred in sociology, in methods for drawing sociograms, and a much older puzzle, the three utilities problem, can be seen as a special case of the brick factory problem with three kilns and three storage facilities.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In graph theory, the crossing number cr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G. For instance, a graph is planar if and only if its crossing number is zero. Determining the crossing number continues to be of great importance in graph drawing, as user studies have shown that drawing graphs with few crossings makes it easier for people to understand the drawing.
Let F be a graph. A hypergraph is called Berge-F if it can be obtained by replacing each edge in F by a hyperedge containing it. Let F be a family of graphs. The Turan number of the family Berge-F is the maximum possible number of edges in an r-uniform hyp ...