Concept

Turán's brick factory problem

Résumé
In the mathematics of graph drawing, Turán's brick factory problem asks for the minimum number of crossings in a drawing of a complete bipartite graph. The problem is named after Pál Turán, who formulated it while being forced to work in a brick factory during World War II. A drawing method found by Kazimierz Zarankiewicz has been conjectured to give the correct answer for every complete bipartite graph, and the statement that this is true has come to be known as the Zarankiewicz crossing number conjecture. The conjecture remains open, with only some special cases solved. During World War II, Hungarian mathematician Pál Turán was forced to work in a brick factory, pushing wagon loads of bricks from kilns to storage sites. The factory had tracks from each kiln to each storage site, and the wagons were harder to push at the points where tracks crossed each other. Turán was inspired by this situation to ask how the factory might be redesigned to minimize the number of crossings between these tracks. Mathematically, this problem can be formalized as asking for a graph drawing of a complete bipartite graph, whose vertices represent kilns and storage sites, and whose edges represent the tracks from each kiln to each storage site. The graph should be drawn in the plane with each vertex as a point, each edge as a curve connecting its two endpoints, and no vertex placed on an edge that it is not incident to. A crossing is counted whenever two edges that are disjoint in the graph have a nonempty intersection in the plane. The question is then, what is the minimum number of crossings in such a drawing? Turán's formulation of this problem is often recognized as one of the first studies of the crossing numbers of graphs. (Another independent formulation of the same concept occurred in sociology, in methods for drawing sociograms, and a much older puzzle, the three utilities problem, can be seen as a special case of the brick factory problem with three kilns and three storage facilities.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.