Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Borexino is a deep underground particle physics experiment to study low energy (sub-MeV) solar neutrinos. The detector is the world's most radio-pure liquid scintillator calorimeter and is protected by 3,800 meters of water-equivalent depth (a volume of overhead rock equivalent in shielding power to that depth of water). The scintillator is pseudocumene and PPO which is held in place by a thin nylon sphere. It is placed within a stainless steel sphere which holds the photomultiplier tubes (PMTs) used as signal detectors and is shielded by a water tank to protect it against external radiation. Outward pointing PMT's look for any outward facing light flashes to tag incoming cosmic muons that manage to penetrate the overburden of the mountain above. Neutrino energy can be determined through the number of photoelectrons measured in the PMT's. While the position can be determined by extrapolating the difference in arrival times of photons at PMT's throughout the chamber. The primary aim of the experiment is to make a precise measurement of the individual neutrino fluxes from the Sun and compare them to the Standard solar model predictions. This will allow scientists to test and to further understand the functioning of the Sun (e.g., nuclear fusion processes taking place at the core of the Sun, solar composition, opacity, matter distribution, etc.) and will also help determine properties of neutrino oscillations, including the MSW effect. Specific goals of the experiment are to detect beryllium-7, boron-8, pp, pep and CNO solar neutrinos as well as anti-neutrinos from the Earth and nuclear power plants. The project may also be able to detect neutrinos from supernovae within our galaxy with a special potential to detect the elastic scattering of neutrinos onto protons, due to neutral current interactions. Borexino is a member of the Supernova Early Warning System. Searches for rare processes and potential unknown particles are also underway.
Javier García Hernández, Randoald Müller
Lesya Shchutska, Yiming Li, Yi Zhang, Alexey Boyarsky, Raffaele Tito D'Agnolo, Enrico Bertuzzo, Wei Liu, Ji Hyun Kim, Zheng Wang, Jing Li, Zhen Liu, Wenjing Wu, Francesco Cerutti, Martin Bauer, Patrick Foldenauer, Karan Kumar, Saurabh Nangia, Emanuele Copello