Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The standard solar model (SSM) is a mathematical treatment of the Sun as a spherical ball of gas (in varying states of ionisation, with the hydrogen in the deep interior being a completely ionised plasma). This model, technically the spherically symmetric quasi-static model of a star, has stellar structure described by several differential equations derived from basic physical principles. The model is constrained by boundary conditions, namely the luminosity, radius, age and composition of the Sun, which are well determined. The age of the Sun cannot be measured directly; one way to estimate it is from the age of the oldest meteorites, and models of the evolution of the Solar System. The composition in the photosphere of the modern-day Sun, by mass, is 74.9% hydrogen and 23.8% helium. All heavier elements, called metals in astronomy, account for less than 2 percent of the mass. The SSM is used to test the validity of stellar evolution theory. In fact, the only way to determine the two free parameters of the stellar evolution model, the helium abundance and the mixing length parameter (used to model convection in the Sun), are to adjust the SSM to "fit" the observed Sun. A star is considered to be at zero age (protostellar) when it is assumed to have a homogeneous composition and to be just beginning to derive most of its luminosity from nuclear reactions (so neglecting the period of contraction from a cloud of gas and dust). To obtain the SSM, a one solar mass () stellar model at zero age is evolved numerically to the age of the Sun. The abundance of elements in the zero age solar model is estimated from primordial meteorites. Along with this abundance information, a reasonable guess at the zero-age luminosity (such as the present-day Sun's luminosity) is then converted by an iterative procedure into the correct value for the model, and the temperature, pressure and density throughout the model calculated by solving the equations of stellar structure numerically assuming the star to be in a steady state.
Jian Wang, Olivier Schneider, Yiming Li, Yi Zhang, Aurelio Bay, Guido Haefeli, Christoph Frei, Frédéric Blanc, Tatsuya Nakada, Michel De Cian, Luca Pescatore, François Fleuret, Elena Graverini, Chitsanu Khurewathanakul, Renato Quagliani, Maria Vieites Diaz, Federico Betti, Andrea Merli, Aravindhan Venkateswaran, Luis Miguel Garcia Martin, Vitalii Lisovskyi, Sebastian Schulte, Veronica Sølund Kirsebom, Mingkui Wang, Zhirui Xu, Lei Zhang, Jessica Prisciandaro, Mark Tobin, Minh Tâm Tran, Niko Neufeld, Matthew Needham, Marc-Olivier Bettler, Greig Alan Cowan, Maurizio Martinelli, Vladislav Balagura, Donal Patrick Hill, Liang Sun, Pietro Marino, Mirco Dorigo, Xiaoxue Han, Liupan An, Federico Leo Redi, Plamen Hristov Hopchev, Thibaud Humair, Maxime Schubiger, Hang Yin, Guido Andreassi, Violaine Bellée, Olivier Göran Girard, Axel Kuonen, Preema Rennee Pais, Pavol Stefko, Tara Nanut, Maria Elena Stramaglia, Tommaso Colombo, Vladimir Macko, Guillaume Max Pietrzyk, Evgenii Shmanin, Dipanwita Dutta, Zheng Wang, Yi Wang, Hans Dijkstra, Gerhard Raven, Peter Clarke, Frédéric Teubert, Giovanni Carboni, Victor Coco, Adam Davis, Paolo Durante, Wenyu Zhang, Yu Zheng, Anton Petrov, Maxim Borisyak, Feng Jiang, Chen Chen, Zhipeng Tang
, , , , , , , , , , , , , , , ,