Koszul complexIn mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean-Louis Koszul (see Lie algebra cohomology). It turned out to be a useful general construction in homological algebra. As a tool, its homology can be used to tell when a set of elements of a (local) ring is an M-regular sequence, and hence it can be used to prove basic facts about the depth of a module or ideal which is an algebraic notion of dimension that is related to but different from the geometric notion of Krull dimension.
Filtration (mathematics)In mathematics, a filtration is an indexed family of subobjects of a given algebraic structure , with the index running over some totally ordered index set , subject to the condition that if in , then . If the index is the time parameter of some stochastic process, then the filtration can be interpreted as representing all historical but not future information available about the stochastic process, with the algebraic structure gaining in complexity with time.
Metric signatureIn mathematics, the signature (v, p, r) of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix gab of the metric tensor with respect to a basis. In relativistic physics, the v represents the time or virtual dimension, and the p for the space and physical dimension.
Cup productIn mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree p and q to form a composite cocycle of degree p + q. This defines an associative (and distributive) graded commutative product operation in cohomology, turning the cohomology of a space X into a graded ring, H∗(X), called the cohomology ring. The cup product was introduced in work of J. W. Alexander, Eduard Čech and Hassler Whitney from 1935–1938, and, in full generality, by Samuel Eilenberg in 1944.
SuperspaceSuperspace is the coordinate space of a theory exhibiting supersymmetry. In such a formulation, along with ordinary space dimensions x, y, z, ..., there are also "anticommuting" dimensions whose coordinates are labeled in Grassmann numbers rather than real numbers. The ordinary space dimensions correspond to bosonic degrees of freedom, the anticommuting dimensions to fermionic degrees of freedom. The word "superspace" was first used by John Wheeler in an unrelated sense to describe the configuration space of general relativity; for example, this usage may be seen in his 1973 textbook Gravitation.
Gravitation (book)Gravitation is a widely adopted textbook on Albert Einstein's general theory of relativity, written by Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler. It was originally published by W. H. Freeman and Company in 1973 and reprinted by Princeton University Press in 2017. It is frequently abbreviated MTW (for its authors' last names). The cover illustration, drawn by Kenneth Gwin, is a line drawing of an apple with cuts in the skin to show the geodesics on its surface.
Gerstenhaber algebraIn mathematics and theoretical physics, a Gerstenhaber algebra (sometimes called an antibracket algebra or braid algebra) is an algebraic structure discovered by Murray Gerstenhaber (1963) that combines the structures of a supercommutative ring and a graded Lie superalgebra. It is used in the Batalin–Vilkovisky formalism. It appears also in the generalization of Hamiltonian formalism known as the De Donder–Weyl theory as the algebra of generalized Poisson brackets defined on differential forms.
Generalized flag varietyIn mathematics, a generalized flag variety (or simply flag variety) is a homogeneous space whose points are flags in a finite-dimensional vector space V over a field F. When F is the real or complex numbers, a generalized flag variety is a smooth or complex manifold, called a real or complex flag manifold. Flag varieties are naturally projective varieties. Flag varieties can be defined in various degrees of generality. A prototype is the variety of complete flags in a vector space V over a field F, which is a flag variety for the special linear group over F.
Zero object (algebra)In algebra, the zero object of a given algebraic structure is, in the sense explained below, the simplest object of such structure. As a set it is a singleton, and as a magma has a trivial structure, which is also an abelian group. The aforementioned abelian group structure is usually identified as addition, and the only element is called zero, so the object itself is typically denoted as {0}. One often refers to the trivial object (of a specified ) since every trivial object is isomorphic to any other (under a unique isomorphism).
Symmetric tensorIn mathematics, a symmetric tensor is a tensor that is invariant under a permutation of its vector arguments: for every permutation σ of the symbols {1, 2, ..., r}. Alternatively, a symmetric tensor of order r represented in coordinates as a quantity with r indices satisfies The space of symmetric tensors of order r on a finite-dimensional vector space V is naturally isomorphic to the dual of the space of homogeneous polynomials of degree r on V.