Summary
High Efficiency Video Coding (HEVC), also known as H.265 and MPEG-H Part 2, is a video compression standard designed as part of the MPEG-H project as a successor to the widely used Advanced Video Coding (AVC, H.264, or MPEG-4 Part 10). In comparison to AVC, HEVC offers from 25% to 50% better data compression at the same level of video quality, or substantially improved video quality at the same bit rate. It supports resolutions up to 8192×4320, including 8K UHD, and unlike the primarily 8-bit AVC, HEVC's higher fidelity Main 10 profile has been incorporated into nearly all supporting hardware. While AVC uses the integer discrete cosine transform (DCT) with 4×4 and 8×8 block sizes, HEVC uses both integer DCT and discrete sine transform (DST) with varied block sizes between 4×4 and 32×32. The (HEIF) is based on HEVC. In most ways, HEVC is an extension of the concepts in H.264/MPEG-4 AVC. Both work by comparing different parts of a frame of video to find areas that are redundant, both within a single frame and between consecutive frames. These redundant areas are then replaced with a short description instead of the original pixels. The primary changes for HEVC include the expansion of the pattern comparison and difference-coding areas from 16×16 pixel to sizes up to 64×64, improved variable-block-size segmentation, improved "intra" prediction within the same picture, improved motion vector prediction and motion region merging, improved motion compensation filtering, and an additional filtering step called sample-adaptive offset filtering. Effective use of these improvements requires much more signal processing capability for compressing the video, but has less impact on the amount of computation needed for decompression. HEVC was standardized by the Joint Collaborative Team on Video Coding (JCT-VC), a collaboration between the ISO/IEC MPEG and ITU-T Study Group 16 VCEG. The ISO/IEC group refers to it as MPEG-H Part 2 and the ITU-T as H.265. The first version of the HEVC standard was ratified in January 2013 and published in June 2013.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.