In physics and engineering, mass flow rate is the mass of a substance which passes per unit of time. Its unit is kilogram per second in SI units, and slug per second or pound per second in US customary units. The common symbol is (ṁ, pronounced "m-dot"), although sometimes μ (Greek lowercase mu) is used. Sometimes, mass flow rate is termed mass flux or mass current, see for example Schaum's Outline of Fluid Mechanics. In this article, the (more intuitive) definition is used. Mass flow rate is defined by the limit: i.e., the flow of mass m through a surface per unit time t. The overdot on the m is Newton's notation for a time derivative. Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity. The change in mass is the amount that flows after crossing the boundary for some time duration, not the initial amount of mass at the boundary minus the final amount at the boundary, since the change in mass flowing through the area would be zero for steady flow. Mass flow rate can also be calculated by where or Q = volume flow rate, ρ = mass density of the fluid, v = flow velocity of the mass elements, A = cross-sectional vector area/surface, jm = mass flux. The above equation is only true for a flat, plane area. In general, including cases where the area is curved, the equation becomes a surface integral: The area required to calculate the mass flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface, e.g. for substances passing through a filter or a membrane, the real surface is the (generally curved) surface area of the filter, macroscopically - ignoring the area spanned by the holes in the filter/membrane. The spaces would be cross-sectional areas. For liquids passing through a pipe, the area is the cross-section of the pipe, at the section considered. The vector area is a combination of the magnitude of the area through which the mass passes through, A, and a unit vector normal to the area, . The relation is .

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (18)
ME-443: Hydroacoustic for hydropower plants
Introduction to pressure wave propagation phenomena in hydraulic circuits, water hammer calculations, transient behaviour of hydroelectric plants, 1D numerical simulation of the dynamic behaviour of F
ME-474: Numerical flow simulation
This course provides practical experience in the numerical simulation of fluid flows. Numerical methods are presented in the framework of the finite volume method. A simple solver is developed with Ma
ENV-222: Soil sciences
Le cours est une introduction aux Sciences du sol. Il a pour but de présenter les principales caractéristiques, propriétés et fonctions des sols. Il fait appel à des notions théoriques mais également
Show more
Related lectures (39)
Bernoulli Equation: Fluid Flow and Pressure Variation
Demonstrates Bernoulli's equation for gas fluid flow and pressure variation, including velocity estimation for water spilling out of a hole.
Continuity Equation, Newton's 2nd Law in Eulerian Concept
Covers the continuity equation for steady laminar flow and Newton's 2nd law.
Fluid Dynamics: Control Volume Approach
Explores the control volume approach in fluid dynamics, emphasizing mass conservation and Newton's second law for practical flow analysis.
Show more
Related publications (86)

Ionic wind amplifier for energy-efficient air propulsion: Prototype design, development, and evaluation

Julien Reymond, Amirmohammad Rajabi, Lei Xie, Donato Rubinetti

Ionic wind, produced by electrohydrodynamic (EHD) processes, holds promise for efficient airflow generation using minimal power. However, practical applications have been limited by relatively low flow rates. This study introduces a novel prototype device ...
Amsterdam2024

Large-scale in-silico analysis of CSF dynamics within the subarachnoid space of the optic nerve

Gilles Fourestey

BackgroundImpaired cerebrospinal fluid (CSF) dynamics is involved in the pathophysiology of neurodegenerative diseases of the central nervous system and the optic nerve (ON), including Alzheimer's and Parkinson's disease, as well as frontotemporal dementia ...
London2024

Design, computational and experimental investigation of a small-scale turbopump for organic Rankine cycle systems

Jürg Alexander Schiffmann, Sajjad Zakeralhoseini

The hydraulic design, computational analysis, and experimental investigations of a high-speed small-scale turbopump for mobile waste heat recovery applications based on organic Rankine cycle systems are presented in this paper. Such applications demand hig ...
2023
Show more
Related concepts (2)
Fluid mechanics
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into fluid statics, the study of fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion.
Fluid dynamics
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aerodynamics (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation.
Related MOOCs (2)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.