Runtime (program lifecycle phase)In computer science, runtime, run time, or execution time is the final phase of a computer programs life cycle, in which the code is being executed on the computer's central processing unit (CPU) as machine code. In other words, "runtime" is the running phase of a program. A runtime error is detected after or during the execution (running state) of a program, whereas a compile-time error is detected by the compiler before the program is ever executed.
Code generation (compiler)In computing, code generation is part of the process chain of a compiler and converts intermediate representation of source code into a form (e.g., machine code) that can be readily executed by the target system. Sophisticated compilers typically perform multiple passes over various intermediate forms. This multi-stage process is used because many algorithms for code optimization are easier to apply one at a time, or because the input to one optimization relies on the completed processing performed by another optimization.
Lock (computer science)In computer science, a lock or mutex (from mutual exclusion) is a synchronization primitive: a mechanism that enforces limits on access to a resource when there are many threads of execution. A lock is designed to enforce a mutual exclusion concurrency control policy, and with a variety of possible methods there exists multiple unique implementations for different applications. Generally, locks are advisory locks, where each thread cooperates by acquiring the lock before accessing the corresponding data.
Type signatureIn computer science, a type signature or type annotation defines the inputs and outputs for a function, subroutine or method. A type signature includes the number, types, and order of the arguments contained by a function. A type signature is typically used during overload resolution for choosing the correct definition of a function to be called among many overloaded forms. In C and C++, the type signature is declared by what is commonly known as a function prototype.
Instance (computer science)In a computer system, any time a new context is created based on some model, it is said that the model has been instantiated. In practice, this instance usually has a data structure in common with other instances, but the values stored in the instances are separate. Changing the values in one instance will then not interfere with the values of some other instance. A computer instance can be software state or hardware which can run a block code, for example a CPU, GPU or a virtual machine.
Procedural programmingProcedural programming is a programming paradigm, derived from imperative programming, based on the concept of the procedure call. Procedures (a type of routine or subroutine) simply contain a series of computational steps to be carried out. Any given procedure might be called at any point during a program's execution, including by other procedures or itself. The first major procedural programming languages appeared circa 1957–1964, including Fortran, ALGOL, COBOL, PL/I and BASIC. Pascal and C were published circa 1970–1972.
Switch statementIn computer programming languages, a switch statement is a type of selection control mechanism used to allow the value of a variable or expression to change the control flow of program execution via search and map. Switch statements function somewhat similarly to the if statement used in programming languages like C/C++, C#, Visual Basic .NET, Java and exists in most high-level imperative programming languages such as Pascal, Ada, C/C++, C#, Visual Basic .NET, Java, and in many other types of language, using such keywords as switch, case, select or inspect.
Late bindingIn computing, late binding or dynamic linkage—though not an identical process to dynamically linking imported code libraries—is a computer programming mechanism in which the method being called upon an object, or the function being called with arguments, is looked up by name at runtime. In other words, a name is associated with a particular operation or object at runtime, rather than during compilation. The name dynamic binding is sometimes used, but is more commonly used to refer to dynamic scope.
Function pointerA function pointer, also called a subroutine pointer or procedure pointer, is a pointer referencing executable code, rather than data. Dereferencing the function pointer yields the referenced function, which can be invoked and passed arguments just as in a normal function call. Such an invocation is also known as an "indirect" call, because the function is being invoked indirectly through a variable instead of directly through a fixed identifier or address. Function pointers allow different code to be executed at runtime.
NamespaceIn computing, a namespace is a set of signs (names) that are used to identify and refer to objects of various kinds. A namespace ensures that all of a given set of objects have unique names so that they can be easily identified. Namespaces are commonly structured as hierarchies to allow reuse of names in different contexts. As an analogy, consider a system of naming of people where each person has a given name, as well as a family name shared with their relatives.