PHYS-467: Machine learning for physicistsMachine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
MATH-522: Empirical processesFrom prototypical examples of estimators used by statisticians, to more complex nonparametric models, methods and theorems will be taught to study their (non)asymptotic behavior, when defined as mappi
MATH-442: Statistical theory-This course gives a mostly rigourous treatment of some statistical methods outside the context of standard likelihood theory.
MATH-336: Randomization and causationThis course covers formal frameworks for causal inference. We focus on experimental designs, definitions of causal models, interpretation of causal parameters and estimation of causal effects.
MATH-441: Robust and nonparametric statisticsIn the decades from 1930 to 1950, many rank-based statistics were introduced. These methods were received with much interest, because they worked under weak conditions. Starting in the late 1950, a th