Course

CIVIL-606: Inference for large-scale time series with application to sensor fusion

Summary

Large-scale time series analysis is performed by a new statistical tool that is superior to other estimators of complex state-space models. The identified stochastic dependences can be used for sensor fusion by Bayesian (e.g. Kalman) filtering or for studying changes in natural/biological phenomena.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.