In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one).
The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the first kind. Identities linking the two kinds appear in the article on Stirling numbers.
Stirling numbers of the first kind are the coefficients in the expansion of the falling factorial
into powers of the variable :
For example, , leading to the values , , and .
Subsequently, it was discovered that the absolute values of these numbers are equal to the number of permutations of certain kinds. These absolute values, which are known as unsigned Stirling numbers of the first kind, are often denoted or . They may be defined directly to be the number of permutations of elements with disjoint cycles. For example, of the permutations of three elements, there is one permutation with three cycles (the identity permutation, given in one-line notation by or in cycle notation by ), three permutations with two cycles (, , and ) and two permutations with one cycle ( and ). Thus, , and . These can be seen to agree with the previous calculation of for .
It was observed by Alfréd Rényi that the unsigned Stirling number also count the number
of permutations of size with left-to-right maxima.
The unsigned Stirling numbers may also be defined algebraically, as the coefficients of the rising factorial:
The notations used on this page for Stirling numbers are not universal, and may conflict with notations in other sources. (The square bracket notation is also common notation for the Gaussian coefficients.)
can be defined as the number of permutations on elements with cycles.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s. The Bell numbers are denoted , where is an integer greater than or equal to zero. Starting with , the first few Bell numbers are 1, 1, 2, 5, 15, 52, 203, 877, 4140, ... .
In mathematics, particularly in combinatorics, a Stirling number of the second kind (or Stirling partition number) is the number of ways to partition a set of n objects into k non-empty subsets and is denoted by or . Stirling numbers of the second kind occur in the field of mathematics called combinatorics and the study of partitions. They are named after James Stirling. The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices.
In mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula. These polynomials occur in the study of many special functions and, in particular, the Riemann zeta function and the Hurwitz zeta function. They are an Appell sequence (i.e. a Sheffer sequence for the ordinary derivative operator). For the Bernoulli polynomials, the number of crossings of the x-axis in the unit interval does not go up with the degree.
Atmospheric new particle formation (NPF) is an important source of climate-relevant aerosol particles which has been observed at many locations globally. To study this phenomenon, the first step is to identify whether an NPF event occurs or not on a given ...
A set R⊂N is called rational if it is well approximable by finite unions of arithmetic progressions, meaning that for every \unicode[STIX]x1D716>0 there exists a set B=⋃i=1raiN+bi, where $a_{1},\ldots ,a_ ...
Given a level set E of an arbitrary multiplicative function f, we establish, by building on the fundamental work of Frantzikinakis and Host [14, 15], a structure theorem that gives a decomposition of 1E into an almost periodic and a pseudo-random part ...