In mathematics, the Bernoulli polynomials, named after Jacob Bernoulli, combine the Bernoulli numbers and binomial coefficients. They are used for series expansion of functions, and with the Euler–MacLaurin formula.
These polynomials occur in the study of many special functions and, in particular, the Riemann zeta function and the Hurwitz zeta function. They are an Appell sequence (i.e. a Sheffer sequence for the ordinary derivative operator). For the Bernoulli polynomials, the number of crossings of the x-axis in the unit interval does not go up with the degree. In the limit of large degree, they approach, when appropriately scaled, the sine and cosine functions.
A similar set of polynomials, based on a generating function, is the family of Euler polynomials.
The Bernoulli polynomials Bn can be defined by a generating function. They also admit a variety of derived representations.
The generating function for the Bernoulli polynomials is
The generating function for the Euler polynomials is
for n ≥ 0, where Bk are the Bernoulli numbers, and Ek are the Euler numbers.
The Bernoulli polynomials are also given by
where D = d/dx is differentiation with respect to x and the fraction is expanded as a formal power series. It follows that
cf. integrals below. By the same token, the Euler polynomials are given by
The Bernoulli polynomials are also the unique polynomials determined by
The integral transform
on polynomials f, simply amounts to
This can be used to produce the inversion formulae below.
An explicit formula for the Bernoulli polynomials is given by
That is similar to the series expression for the Hurwitz zeta function in the complex plane. Indeed, there is the relationship
where ζ(s, q) is the Hurwitz zeta function. The latter generalizes the Bernoulli polynomials, allowing for non-integer values of n.
The inner sum may be understood to be the nth forward difference of xm; that is,
where Δ is the forward difference operator. Thus, one may write
This formula may be derived from an identity appearing above as follows.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces students to modern computational and mathematical techniques for solving problems in chemistry and chemical engineering. The use of introduced numerical methods will be demonstr
In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one). The Stirling numbers of the first and second kind can be understood as inverses of one another when viewed as triangular matrices. This article is devoted to specifics of Stirling numbers of the first kind.
In mathematics, Faulhaber's formula, named after the early 17th century mathematician Johann Faulhaber, expresses the sum of the p-th powers of the first n positive integers as a polynomial in n. In modern notation, Faulhaber's formula is Here, is the binomial coefficient "p + 1 choose k", and the Bj are the Bernoulli numbers with the convention that . Faulhaber's formula concerns expressing the sum of the p-th powers of the first n positive integers as a (p + 1)th-degree polynomial function of n.
In mathematics, an Appell sequence, named after Paul Émile Appell, is any polynomial sequence satisfying the identity and in which is a non-zero constant. Among the most notable Appell sequences besides the trivial example are the Hermite polynomials, the Bernoulli polynomials, and the Euler polynomials. Every Appell sequence is a Sheffer sequence, but most Sheffer sequences are not Appell sequences. Appell sequences have a probabilistic interpretation as systems of moments.
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Concepts de base de l'analyse réelle et introduction aux nombres réels.
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
Polynomial neural networks (PNNs) have been recently shown to be particularly effective at image generation and face recognition, where high-frequency information is critical. Previous studies have revealed that neural networks demonstrate a spectral bias ...
We study three convolutions of polynomials in the context of free probability theory. We prove that these convolutions can be written as the expected characteristic polynomials of sums and products of unitarily invariant random matrices. The symmetric addi ...