Ringing artifactsIn signal processing, particularly , ringing artifacts are artifacts that appear as spurious signals near sharp transitions in a signal. Visually, they appear as bands or "ghosts" near edges; audibly, they appear as "echos" near transients, particularly sounds from percussion instruments; most noticeable are the pre-echos. The term "ringing" is because the output signal oscillates at a fading rate around a sharp transition in the input, similar to a bell after being struck.
Ringing (signal)In electronics, signal processing, and video, ringing is oscillation of a signal, particularly in the step response (the response to a sudden change in input). Often ringing is undesirable, but not always, as in the case of resonant inductive coupling. It is also known as hunting. It is closely related to overshoot, often instigated as damping response following overshoot or undershoot, and thus the terms are at times conflated. It is also known as ripple, particularly in electricity or in frequency domain response.
Edge enhancementEdge enhancement is an filter that enhances the edge contrast of an or video in an attempt to improve its acutance (apparent sharpness). The filter works by identifying sharp edge boundaries in the image, such as the edge between a subject and a background of a contrasting color, and increasing the image contrast in the area immediately around the edge. This has the effect of creating subtle bright and dark highlights on either side of any edges in the image, called overshoot and undershoot, leading the edge to look more defined when viewed from a typical viewing distance.
Settling timeIn control theory the settling time of a dynamical system such as an amplifier or other output device is the time elapsed from the application of an ideal instantaneous step input to the time at which the amplifier output has entered and remained within a specified error band. Settling time includes a propagation delay, plus the time required for the output to slew to the vicinity of the final value, recover from the overload condition associated with slew, and finally settle to within the specified error.
Step responseThe step response of a system in a given initial state consists of the time evolution of its outputs when its control inputs are Heaviside step functions. In electronic engineering and control theory, step response is the time behaviour of the outputs of a general system when its inputs change from zero to one in a very short time. The concept can be extended to the abstract mathematical notion of a dynamical system using an evolution parameter.
Rise timeIn electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value. These values may be expressed as ratios or, equivalently, as percentages with respect to a given reference value. In analog electronics and digital electronics, these percentages are commonly the 10% and 90% (or equivalently 0.1 and 0.9) of the output step height: however, other values are commonly used.
Gibbs phenomenonIn mathematics, the Gibbs phenomenon is the oscillatory behavior of the Fourier series of a piecewise continuously differentiable periodic function around a jump discontinuity. The th partial Fourier series of the function (formed by summing the lowest constituent sinusoids of the Fourier series of the function) produces large peaks around the jump which overshoot and undershoot the function values.
Filter (signal processing)In signal processing, a filter is a device or process that removes some unwanted components or features from a signal. Filtering is a class of signal processing, the defining feature of filters being the complete or partial suppression of some aspect of the signal. Most often, this means removing some frequencies or frequency bands. However, filters do not exclusively act in the frequency domain; especially in the field of many other targets for filtering exist.
Transient responseIn electrical engineering and mechanical engineering, a transient response is the response of a system to a change from an equilibrium or a steady state. The transient response is not necessarily tied to abrupt events but to any event that affects the equilibrium of the system. The impulse response and step response are transient responses to a specific input (an impulse and a step, respectively). In electrical engineering specifically, the transient response is the circuit’s temporary response that will die out with time.
Sinc functionIn mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized. In mathematics, the historical unnormalized sinc function is defined for x ≠ 0 by Alternatively, the unnormalized sinc function is often called the sampling function, indicated as Sa(x). In digital signal processing and information theory, the normalized sinc function is commonly defined for x ≠ 0 by In either case, the value at x = 0 is defined to be the limiting value for all real a ≠ 0 (the limit can be proven using the squeeze theorem).