In physics, aether theories (also known as ether theories) propose the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. "Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and are now replaced by more abstract models."
This early modern aether has little in common with the aether of classical elements from which the name was borrowed. The assorted theories embody the various conceptions of this medium and substance.
Luminiferous aether and History of special relativity
Isaac Newton suggests the existence of an aether in the Third Book of Opticks (1st ed. 1704; 2nd ed. 1718): "Doth not this aethereal medium in passing out of water, glass, crystal, and other compact and dense bodies in empty spaces, grow denser and denser by degrees, and by that means refract the rays of light not in a point, but by bending them gradually in curve lines? ...Is not this medium much rarer within the dense bodies of the Sun, stars, planets and comets, than in the empty celestial space between them? And in passing from them to great distances, doth it not grow denser and denser perpetually, and thereby cause the gravity of those great bodies towards one another, and of their parts towards the bodies; every body endeavouring to go from the denser parts of the medium towards the rarer?"
In the 19th century, luminiferous aether (or ether), meaning light-bearing aether, was a theorized medium for the propagation of light. James Clerk Maxwell developed a model to explain electric and magnetic phenomena using the aether, a model that led to what are now called Maxwell's equations and the understanding that light is an electromagnetic wave. However, a series of increasingly complex experiments had been carried out in the late 1800s like the Michelson–Morley experiment in an attempt to detect the motion of Earth through the aether, and had failed to do so.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
What is now often called Lorentz ether theory (LET) has its roots in Hendrik Lorentz's "theory of electrons", which marked the end of the development of the classical aether theories at the end of the 19th and at the beginning of the 20th century. Lorentz's initial theory was created between 1892 and 1895 and was based on removing assumptions about aether motion. It explained the failure of the negative aether drift experiments to first order in v/c by introducing an auxiliary variable called "local time" for connecting systems at rest and in motion in the aether.
In the 19th century, the theory of the luminiferous aether as the hypothetical medium for the propagation of light waves was widely discussed. The aether hypothesis arose because physicists of that era could not conceive of light waves propagating without a physical medium in which to do so. When experiments failed to detect the hypothesized luminiferous aether, physicists conceived explanations, which preserved the hypothetical aether's existence, for the experiments' failure to detect it.
According to ancient and medieval science, aether (ˈiːθər, alternative spellings include æther, aither, and ether), also known as the fifth element or quintessence, is the material that fills the region of the universe beyond the terrestrial sphere. The concept of aether was used in several theories to explain several natural phenomena, such as the propagation of light and gravity.
We study supersymmetric extension of the Einstein-aether gravitational model where local Lorentz invariance is broken down to the subgroup of spatial rotations by a vacuum expectation value of a timelike vector field called aether. Embedding aether into a ...
This review is focused on the influence of lattice dynamics on the ionic mobility in superionic conductors in particular solid-state Li-ion conductors. After a succinct review of the static view of ionic conduction, the role of polarizability as the underl ...
We study gravity coupled to scalar and fermion fields in the Einstein-Cartan framework. We discuss the most general form of the action that contains terms of mass dimension not bigger than four, leaving out only contributions quadratic in curvature. By res ...
SPRINGER2020
Explores geometry basics, 5 regular polyhedra construction, and their link to ancient physics and planets.
Introduces mechanics, differential and vector calculus, and historical perspectives from Aristotle to Newton.
Explores the use of visual extensions like AR and VR in the workplace, emphasizing their benefits, challenges, and importance for enhancing workplace efficiency.