What is now often called Lorentz ether theory (LET) has its roots in Hendrik Lorentz's "theory of electrons", which marked the end of the development of the classical aether theories at the end of the 19th and at the beginning of the 20th century.
Lorentz's initial theory was created between 1892 and 1895 and was based on removing assumptions about aether motion. It explained the failure of the negative aether drift experiments to first order in v/c by introducing an auxiliary variable called "local time" for connecting systems at rest and in motion in the aether. In addition, the negative result of the Michelson–Morley experiment led to the introduction of the hypothesis of length contraction in 1892. However, other experiments also produced negative results and (guided by Henri Poincaré's principle of relativity) Lorentz tried in 1899 and 1904 to expand his theory to all orders in v/c by introducing the Lorentz transformation. In addition, he assumed that non-electromagnetic forces (if they exist) transform like electric forces. However, Lorentz's expression for charge density and current were incorrect, so his theory did not fully exclude the possibility of detecting the aether. Eventually, it was Henri Poincaré who in 1905 corrected the errors in Lorentz's paper and actually incorporated non-electromagnetic forces (including gravitation) within the theory, which he called "The New Mechanics". Many aspects of Lorentz's theory were incorporated into special relativity (SR) with the works of Albert Einstein and Hermann Minkowski.
Today LET is often treated as some sort of "Lorentzian" or "neo-Lorentzian" interpretation of special relativity. The introduction of length contraction and time dilation for all phenomena in a "preferred" frame of reference, which plays the role of Lorentz's immobile aether, leads to the complete Lorentz transformation (see the Robertson–Mansouri–Sexl test theory as an example), so Lorentz covariance doesn't provide any experimentally verifiable distinctions between LET and SR.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
In this advanced electromagnetics course, you will develop a solid theoretical understanding of wave-matter interactions in natural materials and artificially structured photonic media and devices.
The Fizeau experiment was carried out by Hippolyte Fizeau in 1851 to measure the relative speeds of light in moving water. Fizeau used a special interferometer arrangement to measure the effect of movement of a medium upon the speed of light. According to the theories prevailing at the time, light traveling through a moving medium would be dragged along by the medium, so that the measured speed of the light would be a simple sum of its speed through the medium plus the speed of the medium.
In physics, aether theories (also known as ether theories) propose the existence of a medium, a space-filling substance or field as a transmission medium for the propagation of electromagnetic or gravitational forces. "Since the development of special relativity, theories using a substantial aether fell out of use in modern physics, and are now replaced by more abstract models." This early modern aether has little in common with the aether of classical elements from which the name was borrowed.
The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations. The name originates from its earlier appearance in Lorentzian electrodynamics – named after the Dutch physicist Hendrik Lorentz. It is generally denoted γ (the Greek lowercase letter gamma).
For the European DEMO fusion reactor, several options of the Toroidal Field (TF) coil design were proposed. The winding of the TF coil option 1 is based on React&Wind (RW), Nb3Sn, graded conductors in order to optimize the amount of superconductor accordin ...
Dielectrophoresis (DEP) is a versatile tool for the precise microscale manipulation of a broad range of substances. To unleash the full potential of DEP for the manipulation of complex molecular-sized particulates such as proteins requires the development ...
AMER CHEMICAL SOC2023
,
The Cold Mass Support (CMS) is a basic structural component of the feeder system of the EU DEMO tokamak. The function of this structural element is not only to provide support to the containment duct - wiring the cryogenic lines, electrical bus bars and in ...