Concept

Linear ion trap

Summary
The linear ion trap (LIT) is a type of ion trap mass spectrometer. In a LIT, ions are confined radially by a two-dimensional radio frequency (RF) field, and axially by stopping potentials applied to end electrodes. LITs have high injection efficiencies and high ion storage capacities. One of the first LITs was constructed in 1969, by Dierdre A. Church, who bent linear quadrupoles into closed circle and racetrack geometries and demonstrated storage of 3He+ and H+ ions for several minutes. Earlier, Drees and Paul described a circular quadrupole. However, it was used to produce and confine a plasma, not to store ions. In 1989, Prestage, Dick, and Malecki described that ions could be trapped in the linear quadrupole trap system to enhance ion-molecule reactions, thus it can be used to study spectroscopy of stored ions. The LIT uses a set of quadrupole rods to confine ions radially and a static electrical potential on the end electrodes to confine the ions axially. The LIT can be used as a mass filter or as a trap by creating a potential well for the ions along the axis of the trap. The mass of trapped ions may be determined if the m/z lies between defined parameters. Advantages of the LIT design are high ion storage capacity, high scan rate, and simplicity of construction. Although quadrupole rod alignment is critical, adding a quality control constraint to their production, this constraint is additionally present in the machining requirements of the 3D trap. Ions are either injected into or created within the interior of the LIT. They are confined by application of appropriate RF and DC voltages with their final position maintained within the center section of the LIT. The RF voltage is adjusted and multi-frequency resonance ejection waveforms are applied to the trap to eliminate all but the desired ions in preparation for subsequent fragmentation and mass analysis. The voltages applied to the ion trap are adjusted to stabilize the selected ions and to allow for collisional cooling in preparation for excitation.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
CH-419: Protein mass spectrometry and proteomics
In systems biology, proteomics represents an essential pillar. The understanding of protein function and regulation provides key information to decipher the complexity of living systems. Proteomic tec