Breast developmentBreast development, also known as mammogenesis, is a complex biological process in primates that takes place throughout a female's life. It occurs across several phases, including prenatal development, puberty, and pregnancy. At menopause, breast development ceases and the breasts atrophy. Breast development results in prominent and developed structures on the chest known as breasts in primates, which serve primarily as mammary glands.
AtrophyAtrophy is the partial or complete wasting away of a part of the body. Causes of atrophy include mutations (which can destroy the gene to build up the organ), poor nourishment, poor circulation, loss of hormonal support, loss of nerve supply to the target organ, excessive amount of apoptosis of cells, and disuse or lack of exercise or disease intrinsic to the tissue itself. In medical practice, hormonal and nerve inputs that maintain an organ or body part are said to have trophic effects.
Granulosa cellA granulosa cell or follicular cell is a somatic cell of the sex cord that is closely associated with the developing female gamete (called an oocyte or egg) in the ovary of mammals. In the primordial ovarian follicle, and later in follicle development (folliculogenesis), granulosa cells advance to form a multilayered cumulus oophorus surrounding the oocyte in the preovulatory or antral (or Graafian) follicle. The major functions of granulosa cells include the production of sex steroids, as well as myriad growth factors thought to interact with the oocyte during its development.
FolliculogenesisAlthough the process is similar in many animals, this article will deal exclusively with human folliculogenesis. In biology, folliculogenesis is the maturation of the ovarian follicle, a densely packed shell of somatic cells that contains an immature oocyte. Folliculogenesis describes the progression of a number of small primordial follicles into large preovulatory follicles that occurs in part during the menstrual cycle.
Feminization (biology)In biology and medicine, feminization is the development in an organism of physical characteristics that are usually unique to the female of the species. This may represent a normal developmental process, contributing to sexual differentiation. Feminization can also be induced by environmental factors, and this phenomenon has been observed in several animal species. In the case of transgender hormone therapy, it is intentionally induced artificially.
Aromatase deficiencyAromatase deficiency is a rare condition characterized by extremely low levels or complete absence of the enzyme aromatase activity in the body. It is an autosomal recessive disease resulting from various mutations of gene CPY19 (P450arom) which can lead to ambiguous genitalia and delayed puberty in females, continued linear growth into adulthood and osteoporosis in males and virilization in pregnant mothers. As of 2020, fewer than 15 cases have been identified in genetically male individuals and at least 30 cases in genetically female individuals.
3α-Androstanediol3α-Androstanediol also known as 5α-androstane-3α,17β-diol and sometimes shortened in the literature to 3α-diol, is an endogenous steroid hormone and neurosteroid and a metabolite of androgens like dihydrotestosterone (DHT). 3α-Androstanediol is an inhibitory androstane neurosteroid and weak androgen and estrogen. As a neurosteroid, it acts as a potent positive allosteric modulator of the GABAA receptor, and has been found to have rewarding, anxiolytic, pro-sexual, and anticonvulsant effects.
Aromatase excess syndromeAromatase excess syndrome (AES or AEXS) is a rare genetic and endocrine syndrome which is characterized by an overexpression of aromatase, the enzyme responsible for the biosynthesis of the estrogen sex hormones from the androgens, in turn resulting in excessive levels of circulating estrogens and, accordingly, symptoms of hyperestrogenism. It affects both sexes, manifesting itself in males as marked or complete phenotypical feminization (with the exception of the genitalia; i.e.
Membrane estrogen receptorMembrane estrogen receptors (mERs) are a group of receptors which bind estrogen. Unlike the estrogen receptor (ER), a nuclear receptor which mediates its effects via genomic mechanisms, mERs are cell surface receptors which rapidly alter cell signaling via modulation of intracellular signaling cascades. Putative mERs include membrane-associated ERα (mERα) and ERβ (mERβ), GPER (GPR30), GPRC6A, ER-X, ERx and Gq-mER. The mERs have been reviewed.
GenisteinGenistein (C15H10O5) is a naturally occurring compound that structurally belongs to a class of compounds known as isoflavones. It is described as an angiogenesis inhibitor and a phytoestrogen. It was first isolated in 1899 from the dyer's broom, Genista tinctoria; hence, the chemical name. The compound structure was established in 1926, when it was found to be identical with that of prunetol. It was chemically synthesized in 1928. It has been shown to be the primary secondary metabolite of the Trifolium species and Glycine max.