Résumé
vignette|Le segment . En géométrie, un segment de droite (souvent abrégé en « segment ») est une portion de droite délimitée par deux points, appelés extrémités du segment. Un segment reliant deux points et est noté ou et représente la partie de la droite qui se situe « entre » les points et . Intuitivement, un segment correspond à un fil tendu entre deux points, en négligeant l’épaisseur du fil et la déformation due à son poids. Dans le cadre de la géométrie affine sur le corps des nombres réels, le segment peut recevoir une définition précise : Dans cette définition, on suppose que et sont éléments d’un même espace affine (de dimension finie ou infinie, et qui peut être par ailleurs un espace vectoriel) sur le corps des nombres réels. Le barycentre ne changeant pas lorsque tous les coefficients sont multipliés par une même constante non nulle, on déduit immédiatement de cette remarque l’énoncé suivant : Lorsque l’on travaille dans un espace vectoriel, cette remarque fournit une description utile du segment , à savoir : Si l’espace affine est topologique et séparé (au sens de Hausdorff), alors un segment est compact, comme image du compact par l’application continue . On pourrait inverser les bornes des segments ; ainsi il est tout à fait licite d’écrire par exemple pour . Cependant, il y a une ambiguïté dans le cas de : si les segments et sont égaux au sens affine, ils ne le sont pas en tant qu’intervalles puisque est l’intervalle vide (car ). En géométrie euclidienne, le segment est placé dans un espace euclidien — ce peut être notamment un plan ou l’espace à trois dimensions muni de la distance familière entre points. Soient et points quelconques de . La longueur du segment est égale à la distance . Le segment est l’ensemble des points où l’inégalité triangulaire devient une égalité, ce qu’on peut écrire : En géométrie hyperbolique, on peut également disposer du concept intuitif de « segment » entre et représentant la portion de la droite hyperbolique située « entre » ces deux points dans le plan hyperbolique (ou dans un espace hyperbolique de n’importe quelle dimension).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (3)
Concepts associés (120)
Conique
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
Arc de cercle
thumb|Un arc de cercle (parme) de rayon R et de longueur d, avec son angle au centre α, sa corde 2c et sa flèche t Un arc de cercle est une portion de cercle limitée par deux points. Deux points A et B d'un cercle découpent celui-ci en deux arcs. Quand les points ne sont pas diamétralement opposés, l'un des arcs est plus petit qu'un demi-cercle et l'autre plus grand qu'un demi-cercle. Le plus petit des arcs est, en général, noté et l'autre parfois noté . On considère un cercle de centre O, et un arc d'extrémités A et B.
Segment (mathématiques)
vignette|Le segment . En géométrie, un segment de droite (souvent abrégé en « segment ») est une portion de droite délimitée par deux points, appelés extrémités du segment. Un segment reliant deux points et est noté ou et représente la partie de la droite qui se situe « entre » les points et . Intuitivement, un segment correspond à un fil tendu entre deux points, en négligeant l’épaisseur du fil et la déformation due à son poids.
Afficher plus
Cours associés (68)
MATH-467: Probabilistic methods in combinatorics
We develop a sophisticated framework for solving problems in discrete mathematics through the use of randomness (i.e., coin flipping). This includes constructing mathematical structures with unexpecte
MATH-261: Discrete optimization
This course is an introduction to linear and discrete optimization. Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
Afficher plus