In mathematics, particularly in abstract algebra, a semigroup with involution or a -semigroup is a semigroup equipped with an involutive anti-automorphism, which—roughly speaking—brings it closer to a group because this involution, considered as unary operator, exhibits certain fundamental properties of the operation of taking the inverse in a group: uniqueness, double application "cancelling itself out", and the same interaction law with the binary operation as in the case of the group inverse. It is thus not a surprise that any group is a semigroup with involution. However, there are significant natural examples of semigroups with involution that are not groups.
An example from linear algebra is the multiplicative monoid of real square matrices of order n (called the full linear monoid). The map which sends a matrix to its transpose is an involution because the transpose is well defined for any matrix and obeys the law (AB)T = BTAT, which has the same form of interaction with multiplication as taking inverses has in the general linear group (which is a subgroup of the full linear monoid). However, for an arbitrary matrix, AAT does not equal the identity element (namely the diagonal matrix). Another example, coming from formal language theory, is the free semigroup generated by a nonempty set (an alphabet), with string concatenation as the binary operation, and the involution being the map which reverses the linear order of the letters in a string. A third example, from basic set theory, is the set of all binary relations between a set and itself, with the involution being the converse relation, and the multiplication given by the usual composition of relations.
Semigroups with involution appeared explicitly named in a 1953 paper of Viktor Wagner (in Russian) as result of his attempt to bridge the theory of semigroups with that of semiheaps.
Let S be a semigroup with its binary operation written multiplicatively. An involution in S is a unary operation * on S (or, a transformation * : S → S, x ↦ x) satisfying the following conditions:
For all x in S, (x*)* = x.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Stochastic PDEs are used to model systems that are spatially extended and include a random component. This course gives an introduction to this topic, including some Gaussian measure theory and some a
Techniques et théories de base pour les équations aux dérivées partielles d'évolution. Etude d'exemples fondamentaux: équations du premier ordre, équation des ondes, équation de la chaleur. Théorème d
In mathematics, a semigroup is a nonempty set together with an associative binary operation. A special class of semigroups is a class of semigroups satisfying additional properties or conditions. Thus the class of commutative semigroups consists of all those semigroups in which the binary operation satisfies the commutativity property that ab = ba for all elements a and b in the semigroup. The class of finite semigroups consists of those semigroups for which the underlying set has finite cardinality.
In algebra, a presentation of a monoid (or a presentation of a semigroup) is a description of a monoid (or a semigroup) in terms of a set Σ of generators and a set of relations on the free monoid Σ∗ (or the free semigroup Σ+) generated by Σ. The monoid is then presented as the quotient of the free monoid (or the free semigroup) by these relations. This is an analogue of a group presentation in group theory. As a mathematical structure, a monoid presentation is identical to a string rewriting system (also known as a semi-Thue system).
In , a branch of mathematics, a dagger category (also called involutive category or category with involution) is a equipped with a certain structure called dagger or involution. The name dagger category was coined by Peter Selinger. A dagger category is a category equipped with an involutive contravariant endofunctor which is the identity on . In detail, this means that: for all morphisms , there exist its adjoint for all morphisms , for all objects , for all and , Note that in the previous definition, the term "adjoint" is used in a way analogous to (and inspired by) the linear-algebraic sense, not in the category-theoretic sense.
We prove some new cases of the Grothendieck-Serre conjecture for classical groups. This is based on a new construction of the Gersten-Witt complex for Witt groups of Azumaya algebras with involution on regular semilocal rings, with explicit second residue ...
WILEY2022
Conjugation spaces are topological spaces equipped with an involution such that their fixed points have the same mod 2 cohomology (as a graded vector space, a ring and even an unstable algebra) but with all degrees divided by two, generalizing the classica ...
CAMBRIDGE UNIV PRESS2021
In this paper, we study local well-posedness and orbital stability of standing waves for a singularly perturbed one-dimensional nonlinear Klein-Gordon equation. We first establish local well-posedness of the Cauchy problem by a fixed point argument. Unlike ...