Skolem's paradoxIn mathematical logic and philosophy, Skolem's paradox is a seeming contradiction that arises from the downward Löwenheim–Skolem theorem. Thoralf Skolem (1922) was the first to discuss the seemingly contradictory aspects of the theorem, and to discover the relativity of set-theoretic notions now known as non-absoluteness. Although it is not an actual antinomy like Russell's paradox, the result is typically called a paradox and was described as a "paradoxical state of affairs" by Skolem (1922: p. 295).
EnumerationAn enumeration is a complete, ordered listing of all the items in a collection. The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration (for example, whether the set must be finite, or whether the list is allowed to contain repetitions) depend on the discipline of study and the context of a given problem. Some sets can be enumerated by means of a natural ordering (such as 1, 2, 3, 4, ...
Indexed familyIn mathematics, a family, or indexed family, is informally a collection of objects, each associated with an index from some index set. For example, a family of real numbers, indexed by the set of integers, is a collection of real numbers, where a given function selects one real number for each integer (possibly the same) as indexing. More formally, an indexed family is a mathematical function together with its domain and (that is, indexed families and mathematical functions are technically identical, just point of views are different).
Cantor's theoremIn mathematical set theory, Cantor's theorem is a fundamental result which states that, for any set , the set of all subsets of the power set of has a strictly greater cardinality than itself. For finite sets, Cantor's theorem can be seen to be true by simple enumeration of the number of subsets. Counting the empty set as a subset, a set with elements has a total of subsets, and the theorem holds because for all non-negative integers. Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite sets also.
Cardinality of the continuumIn set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers , sometimes called the continuum. It is an infinite cardinal number and is denoted by (lowercase Fraktur "c") or . The real numbers are more numerous than the natural numbers . Moreover, has the same number of elements as the power set of Symbolically, if the cardinality of is denoted as , the cardinality of the continuum is This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities.
EquinumerosityIn mathematics, two sets or classes A and B are equinumerous if there exists a one-to-one correspondence (or bijection) between them, that is, if there exists a function from A to B such that for every element y of B, there is exactly one element x of A with f(x) = y. Equinumerous sets are said to have the same cardinality (number of elements). The study of cardinality is often called equinumerosity (equalness-of-number). The terms equipollence (equalness-of-strength) and equipotence (equalness-of-power) are sometimes used instead.
Dense setIn topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine approximation). Formally, is dense in if the smallest closed subset of containing is itself.
Almost allIn mathematics, the term "almost all" means "all but a negligible quantity". More precisely, if is a set, "almost all elements of " means "all elements of but those in a negligible subset of ". The meaning of "negligible" depends on the mathematical context; for instance, it can mean finite, countable, or null. In contrast, "almost no" means "a negligible quantity"; that is, "almost no elements of " means "a negligible quantity of elements of ". Throughout mathematics, "almost all" is sometimes used to mean "all (elements of an infinite set) except for finitely many".
Cantor's diagonal argumentIn set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers. Such sets are now known as uncountable sets, and the size of infinite sets is now treated by the theory of cardinal numbers which Cantor began.
History of mathematicsThe history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. From 3000 BC the Mesopotamian states of Sumer, Akkad and Assyria, followed closely by Ancient Egypt and the Levantine state of Ebla began using arithmetic, algebra and geometry for purposes of taxation, commerce, trade and also in the patterns in nature, the field of astronomy and to record time and formulate calendars.