Related concepts (17)
Negligible set
In mathematics, a negligible set is a set that is small enough that it can be ignored for some purpose. As common examples, finite sets can be ignored when studying the limit of a sequence, and null sets can be ignored when studying the integral of a measurable function. Negligible sets define several useful concepts that can be applied in various situations, such as truth almost everywhere.
Dense set
In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine approximation). Formally, is dense in if the smallest closed subset of containing is itself.
Nowhere dense set
In mathematics, a subset of a topological space is called nowhere dense or rare if its closure has empty interior. In a very loose sense, it is a set whose elements are not tightly clustered (as defined by the topology on the space) anywhere. For example, the integers are nowhere dense among the reals, whereas the interval (0, 1) is not nowhere dense. A countable union of nowhere dense sets is called a meagre set. Meagre sets play an important role in the formulation of the , which is used in the proof of several fundamental results of functional analysis.
Baire space
In mathematics, a topological space is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the , compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, analysis, in particular functional analysis. For more motivation and applications, see the article .
Baire category theorem
The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space (a topological space such that the intersection of countably many dense open sets is still dense). It is used in the proof of results in many areas of analysis and geometry, including some of the fundamental theorems of functional analysis.
Isolated point
In mathematics, a point x is called an isolated point of a subset S (in a topological space X) if x is an element of S and there exists a neighborhood of x that does not contain any other points of S. This is equivalent to saying that the singleton {x} is an open set in the topological space S (considered as a subspace of X). Another equivalent formulation is: an element x of S is an isolated point of S if and only if it is not a limit point of S.
Topological property
In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.
Sigma-ideal
In mathematics, particularly measure theory, a sigma-ideal, or sigma ideal, of a sigma-algebra (sigma, read "sigma," means countable in this context) is a subset with certain desirable closure properties. It is a special type of ideal. Its most frequent application is in probability theory. Let be a measurable space (meaning is a sigma-algebra of subsets of ). A subset of is a sigma-ideal if the following properties are satisfied: When and then implies ; If then Briefly, a sigma-ideal must contain the empty set and contain subsets and countable unions of its elements.
Null set
In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length. The notion of null set should not be confused with the empty set as defined in set theory. Although the empty set has Lebesgue measure zero, there are also non-empty sets which are null. For example, any non-empty countable set of real numbers has Lebesgue measure zero and therefore is null.
Weierstrass function
In mathematics, the Weierstrass function is an example of a real-valued function that is continuous everywhere but differentiable nowhere. It is an example of a fractal curve. It is named after its discoverer Karl Weierstrass. The Weierstrass function has historically served the role of a pathological function, being the first published example (1872) specifically concocted to challenge the notion that every continuous function is differentiable except on a set of isolated points.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.