In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets. A common problem in topology is to decide whether two topological spaces are homeomorphic or not. To prove that two spaces are not homeomorphic, it is sufficient to find a topological property which is not shared by them. A property is: Hereditary, if for every topological space and subset the subspace has property Weakly hereditary, if for every topological space and closed subset the subspace has property Cardinal function#Cardinal functions in topology The cardinality |X| of the space X. The cardinality τ(X) of the topology (the set of open subsets) of the space X. Weight w(X), the least cardinality of a basis of the topology of the space X. Density d(X), the least cardinality of a subset of X whose closure is X. Separation axiom Note that some of these terms are defined differently in older mathematical literature; see history of the separation axioms. T0 or Kolmogorov. A space is Kolmogorov if for every pair of distinct points x and y in the space, there is at least either an open set containing x but not y, or an open set containing y but not x. T1 or Fréchet. A space is Fréchet if for every pair of distinct points x and y in the space, there is an open set containing x but not y. (Compare with T0; here, we are allowed to specify which point will be contained in the open set.) Equivalently, a space is T1 if all its singletons are closed. T1 spaces are always T0. Sober. A space is sober if every irreducible closed set C has a unique generic point p.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.