Silver nitrate is an inorganic compound with chemical formula AgNO3. It is a versatile precursor to many other silver compounds, such as those used in photography. It is far less sensitive to light than the halides. It was once called lunar caustic because silver was called luna by ancient alchemists who associated silver with the moon. In solid silver nitrate, the silver ions are three-coordinated in a trigonal planar arrangement.
Albertus Magnus, in the 13th century, documented the ability of nitric acid to separate gold and silver by dissolving the silver. Indeed silver nitrate can be prepared by dissolving silver in nitric acid followed by evaporation of the solution. The stoichiometry of the reaction depends upon the concentration of nitric acid used.
3 Ag + 4 HNO3 (cold and diluted) → 3 AgNO3 + 2 H2O + NO
Ag + 2 HNO3 (hot and concentrated) → AgNO3 + H2O + NO2
The structure of silver nitrate has been examined by X-ray crystallography several times. In the common orthorhombic form stable at ordinary temperature and pressure, the silver atoms form pairs with Ag---Ag contacts of 3.227 Å. Each Ag+ center is bonded to six oxygen centers of both uni- and bidentate nitrate ligands. The Ag-O distances range from 2.384 to 2.702 Å.
A typical reaction with silver nitrate is to suspend a rod of copper in a solution of silver nitrate and leave it for a few hours. The silver nitrate reacts with copper to form hairlike crystals of silver metal and a blue solution of copper nitrate:
2 AgNO3 + Cu → Cu(NO3)2 + 2 Ag
Silver nitrate decomposes when heated:
2 AgNO3(l) → 2 Ag(s) + O2(g) + 2 NO2(g)
Qualitatively, decomposition is negligible below the melting point, but becomes appreciable around 250 °C and fully decomposes at 440 °C.
Most metal nitrates thermally decompose to the respective oxides, but silver oxide decomposes at a lower temperature than silver nitrate, so the decomposition of silver nitrate yields elemental silver instead.
Silver nitrate is the least expensive salt of silver; it offers several other advantages as well.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course builds upon the underlying theory in thermodynamics, reaction kinetics, and transport and applies these methods to electrosynthesis, fuel cell, and battery applications. Special focus is p
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
Silver chloride is a chemical compound with the chemical formula AgCl. This white crystalline solid is well known for its low solubility in water and its sensitivity to light. Upon illumination or heating, silver chloride converts to silver (and chlorine), which is signaled by grey to black or purplish coloration in some samples. AgCl occurs naturally as a mineral chlorargyrite. It is produced by a metathesis reaction for use in photography and in pH meters as electrodes.
Argyria or argyrosis is a condition caused by excessive exposure to chemical compounds of the element silver, or to silver dust. The most dramatic symptom of argyria is that the skin turns blue or blue-grey. It may take the form of generalized argyria or local argyria. Generalized argyria affects large areas over much of the visible surface of the body. Local argyria shows in limited regions of the body, such as patches of skin, parts of the mucous membrane or the conjunctiva.
Daguerreotype (dəˈɡɛər(i.)əˌtaɪp,_-(i.)oʊ-; daguerréotype) was the first publicly available photographic process; it was widely used during the 1840s and 1850s. "Daguerreotype" also refers to an image created through this process. Invented by Louis Daguerre and introduced worldwide in 1839, the daguerreotype was almost completely superseded by 1860 with new, less expensive processes, such as ambrotype (collodion process), that yield more readily viewable images.
Covers coordination numbers, common ligands, and preferred geometries in coordination chemistry, emphasizing the spatial distribution between ligands and the role of d⁸ electron configurations.
Covers the fundamentals of electrochemistry, focusing on cell potential, current production, and the relationship between current and reactant conversion.
The combination of palladium salts and bipyridyl ligands can lead to the formation of a large variety of coordination complexes, with different shapes and sizes, displaying a very versatile host-guest chemistry. Increasing their structural complexity remai ...
Mechanobiology is an emerging field that investigates the influence of mechanical forces on cell behavior and disease progression. Cells and tissues experience various mechanical stimuli in their natural environment, such as stretching and contracting, whi ...
Nitrate contamination of rivers from agricultural sources, is a challenging problem for water quality management. The relationship between solute concentrations and streamflow rates (C-Q) observed at catchment outlets provide useful information on hydrolog ...