Concept

Semigroup with two elements

In mathematics, a semigroup with two elements is a semigroup for which the cardinality of the underlying set is two. There are exactly five nonisomorphic semigroups having two elements: O2, the null semigroup of order two, LO2, the left zero semigroup of order two, RO2, the right zero semigroup of order two, ({0,1}, ∧) (where "∧" is the logical connective "and"), or equivalently the set {0,1} under multiplication: the only semilattice with two elements and the only non-null semigroup with zero of order two, also a monoid, and ultimately the two-element Boolean algebra, (Z2, +2) (where Z2 = {0,1} and "+2" is "addition modulo 2"), or equivalently ({0,1}, ⊕) (where "⊕" is the logical connective "xor"), or equivalently the set {−1,1} under multiplication: the only group of order two. The semigroups LO2 and RO2 are antiisomorphic. O2, ({0,1}, ∧) and (Z2, +2) are commutative, and LO2 and RO2 are noncommutative. LO2, RO2 and ({0,1}, ∧) are bands. Choosing the set A = as the underlying set having two elements, sixteen binary operations can be defined in A. These operations are shown in the table below. In the table, a matrix of the form indicates a binary operation on A having the following Cayley table. In this table: The semigroup ({0,1}, ) denotes the two-element semigroup containing the zero element 0 and the unit element 1. The two binary operations defined by matrices in a green background are associative and pairing either with A creates a semigroup isomorphic to the semigroup ({0,1}, ). Every element is idempotent in this semigroup, so it is a band. Furthermore, it is commutative (abelian) and thus a semilattice. The order induced is a linear order, and so it is in fact a lattice and it is also a distributive and complemented lattice, i.e. it is actually the two-element Boolean algebra. The two binary operations defined by matrices in a blue background are associative and pairing either with A creates a semigroup isomorphic to the null semigroup O2 with two elements.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.