Concept

Trivial semigroup

In mathematics, a trivial semigroup (a semigroup with one element) is a semigroup for which the cardinality of the underlying set is one. The number of distinct nonisomorphic semigroups with one element is one. If S = { a } is a semigroup with one element, then the Cayley table of S is {| class="wikitable" |- !

! a
a
a
}
The only element in S is the zero element 0 of S and is also the identity element 1 of S. However not all semigroup theorists consider the unique element in a semigroup with one element as the zero element of the semigroup. They define zero elements only in semigroups having at least two elements.
In spite of its extreme triviality, the semigroup with one element is important in many situations. It is the starting point for understanding the structure of semigroups. It serves as a counterexample in illuminating many situations. For example, the semigroup with one element is the only semigroup in which 0 = 1, that is, the zero element and the identity element are equal.
Further, if S is a semigroup with one element, the semigroup obtained by adjoining an identity element to S is isomorphic to the semigroup obtained by adjoining a zero element to S.
The semigroup with one element is also a group.
In the language of , any semigroup with one element is a terminal object in the category of semigroups.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.