A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45°–45°–90°. This is called an "angle-based" right triangle. A "side-based" right triangle is one in which the lengths of the sides form ratios of whole numbers, such as 3 : 4 : 5, or of other special numbers such as the golden ratio. Knowing the relationships of the angles or ratios of sides of these special right triangles allows one to quickly calculate various lengths in geometric problems without resorting to more advanced methods.
Angle-based special right triangles are specified by the relationships of the angles of which the triangle is composed. The angles of these triangles are such that the larger (right) angle, which is 90 degrees or pi/2 radians, is equal to the sum of the other two angles.
The side lengths are generally deduced from the basis of the unit circle or other geometric methods. This approach may be used to rapidly reproduce the values of trigonometric functions for the angles 30°, 45°, and 60°.
Special triangles are used to aid in calculating common trigonometric functions, as below:
The 45°–45°–90° triangle, the 30°–60°–90° triangle, and the equilateral/equiangular (60°–60°–60°) triangle are the three Möbius triangles in the plane, meaning that they tessellate the plane via reflections in their sides; see Triangle group.
In plane geometry, constructing the diagonal of a square results in a triangle whose three angles are in the ratio 1 : 1 : 2, adding up to 180° or pi radians. Hence, the angles respectively measure 45° (pi/4), 45° (pi/4), and 90° (pi/2). The sides in this triangle are in the ratio 1 : 1 : , which follows immediately from the Pythagorean theorem.
Of all right triangles, the 45° - 45° - 90° degree triangle has the smallest ratio of the hypotenuse to the sum of the legs, namely /2. and the greatest ratio of the altitude from the hypotenuse to the sum of the legs, namely /4.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the Pell numbers are an infinite sequence of integers, known since ancient times, that comprise the denominators of the closest rational approximations to the square root of 2. This sequence of approximations begins 1/1, 3/2, 7/5, 17/12, and 41/29, so the sequence of Pell numbers begins with 1, 2, 5, 12, and 29. The numerators of the same sequence of approximations are half the companion Pell numbers or Pell–Lucas numbers; these numbers form a second infinite sequence that begins with 2, 6, 14, 34, and 82.
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation: The theorem is named for the Greek philosopher Pythagoras, born around 570 BC.
In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being incommensurable, meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Covers the concepts of local homeomorphisms and coverings in manifolds, emphasizing the conditions under which a map is considered a local homeomorphism or a covering.
In this note, we study certain sufficient conditions for a set of minimal klt pairs ( X, triangle) with kappa ( X, triangle) = dim( X ) - 1 to be bounded. ...
European Mathematical Soc-Ems2024
, , ,
Shape-changing robots adapt their own morphology to address a wider range of functions or environments than is possible with a fixed or rigid structure. Akin to biological organisms, the ability to alter shape or configuration emerges from the underlying m ...
It is proved that the total length of any set of countably many rectifiable curves whose union meets all straight lines that intersect the unit square U is at least 2.00002. This is the first improvement on the lower bound of 2 known since 1964. A similar ...