**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Irrational number

Summary

In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being incommensurable, meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself.
Among irrational numbers are the ratio π of a circle's circumference to its diameter, Euler's number e, the golden ratio φ, and the square root of two. In fact, all square roots of natural numbers, other than of perfect squares, are irrational.
Like all real numbers, irrational numbers can be expressed in positional notation, notably as a decimal number. In the case of irrational nu

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related units

No results

Related publications (6)

Related people

No results

Loading

Loading

Loading

Related concepts (104)

Real number

In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values c

Pi

The number π (paɪ; spelled out as "pi") is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159. The number π appears in many fo

Rational number

In mathematics, a rational number is a number that can be expressed as the quotient or fraction \tfrac p q of two integers, a numerator p and a non-zero denominator q. For

Related courses (12)

MATH-101(a): Analysis I

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.

CS-101: Advanced information, computation, communication I

Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics as diverse as mathematical reasoning, combinatorics, discrete structures & algorithmic thinking.

MATH-603: Subconvexity, Periods and Equidistribution

This course is a modern exposition of "Duke's Theorems" which describe the distribution of representations of large integers by a fixed ternary quadratic form. It will be the occasion to introduce the students to the adelic language, the theory of automorphic forms and their associated L-functions

The ARSIS concept is designed to increase the spatial resolution of an image without modification of its spectral contents, by merging structures extracted from a higher resolution image of the same scene, but in a different spectral band. It makes use of wavelet transforms and multiresolution analysis. It is currently applied in an operational way with dyadic wavelet transforms that limit the merging of images whose ratio of their resolution is a power of 2. Rational discrete wavelet transforms can be approximated numerically by rational filter banks which would enable a more general merging. Indeed, in theory, the ratio of the resolution of the images to merge is a power of a certain family of rational numbers. The aim of this paper is to examine whether the use of those approximations of rational wavelet transforms are efficient within the ARSIS concept. This work relies on a particular case: the merging of a 10 m SPOT Panchromatic image and a 30 m Landsat Thematic Mapper multispectral image to synthesize 10m multispectral image TM-HR.

In this thesis, we investigate the inverse problem of trees and barcodes from a combinatorial, geometric, probabilistic and statistical point of view.Computing the persistent homology of a merge tree yields a barcode B. Reconstructing a tree from B involves gluing the branches back together. We are able to define combinatorial equivalence classes of merge trees and barcodes that allow us to completely solve this inverse problem. A barcode can be associated with an element in the symmetric group, and the number of trees with the same barcode, the tree realization number, depends only on the permutation type. We compare these combinatorial definitions of barcodes and trees to those of phylogenetic trees, thus describing the subtle differences between these spaces. The result is a clear combinatorial distinction between the phylogenetic tree space and the merge tree space.The representation of a barcode by a permutation not only gives a formula for the tree realization number, but also opens the door to deeper connections between inverse problems in topological data analysis, group theory, and combinatorics.Based on the combinatorial classes of barcodes, we construct a stratification of the barcode space. We define coordinates that partition the space of barcodes into regions indexed by the averages and the standard deviations of birth and death times and by the permutation type of a barcode. By associating to a barcode the coordinates of its region, we define a new invariant of barcodes.These equivalence classes define a stratification of the space of barcodes with n bars where the strata are indexed by the symmetric group on n letters and its parabolic subgroups.We study the realization numbers computed from barcodes with uniform permutation type (i.e., drawn from the uniform distribution on the symmetric group) and establish a fundamental null hypothesis for this invariant. We show that the tree realization number can be used as a statistic to distinguish distributions of trees by comparing neuronal trees to random barcode distributions.

We consider several "provably secure" hash functions that compute simple sums in a well chosen group (G,*). Security properties of such functions provably translate in a natural way to computational problems in G that are simple to define and possibly also hard to solve. Given k disjoint lists Li of group elements, the k-sum problem asks for gi ∊ Li such that g1 * g2 *...* gk = 1G. Hardness of the problem in the respective groups follows from some "standard" assumptions used in public-key cryptology such as hardness of integer factoring, discrete logarithms, lattice reduction and syndrome decoding. We point out evidence that the k-sum problem may even be harder than the above problems. Two hash functions based on the group k-sum problem, SWIFFTX and FSB, were submitted to NIST as candidates for the future SHA-3 standard. Both submissions were supported by some sort of a security proof. We show that the assessment of security levels provided in the proposals is not related to the proofs included. The main claims on security are supported exclusively by considerations about available attacks. By introducing "second-order" bounds on bounds on security, we expose the limits of such an approach to provable security. A problem with the way security is quantified does not necessarily mean a problem with security itself. Although FSB does have a history of failures, recent versions of the two above functions have resisted cryptanalytic efforts well. This evidence, as well as the several connections to more standard problems, suggests that the k-sum problem in some groups may be considered hard on its own, and possibly lead to provable bounds on security. Complexity of the non-trivial tree algorithm is becoming a standard tool for measuring the associated hardness. We propose modifications to the multiplicative Very Smooth Hash and derive security from multiplicative k-sums in contrast to the original reductions that related to factoring or discrete logarithms. Although the original reductions remain valid, we measure security in a new, more aggressive way. This allows us to relax the parameters and hash faster. We obtain a function that is only three times slower compared to SHA-256 and is estimated to offer at least equivalent collision resistance. The speed can be doubled by the use of a special modulus, such a modified function is supported exclusively by the hardness of multiplicative k-sums modulo a power of two. Our efforts culminate in a new multiplicative k-sum function in finite fields that further generalizes the design of Very Smooth Hash. In contrast to the previous variants, the memory requirements of the new function are negligible. The fastest instance of the function expected to offer 128-bit collision resistance runs at 24 cycles per byte on an Intel Core i7 processor and approaches the 17.4 figure of SHA-256. The new functions proposed in this thesis do not provably achieve a usual security property such as preimage or collision resistance from a well-established assumption. They do however enjoy unconditional provable separation of inputs that collide. Changes in input that are small with respect to a well defined measure never lead to identical output in the compression function.

Related lectures (23)