HeatIn thermodynamics, heat is the thermal energy transferred between systems due to a temperature difference. In colloquial use, heat sometimes refers to thermal energy itself. An example of formal vs. informal usage may be obtained from the right-hand photo, in which the metal bar is "conducting heat" from its hot end to its cold end, but if the metal bar is considered a thermodynamic system, then the energy flowing within the metal bar is called internal energy, not heat.
Timeline of thermodynamicsA timeline of events in the history of thermodynamics. 1650 – Otto von Guericke builds the first vacuum pump 1660 – Robert Boyle experimentally discovers Boyle's Law, relating the pressure and volume of a gas (published 1662) 1665 – Robert Hooke published his book Micrographia, which contained the statement: "Heat being nothing else but a very brisk and vehement agitation of the parts of a body." 1667 – J. J. Becher puts forward a theory of combustion involving combustible earth in his book Physica subterranea (see Phlogiston theory).
History of chemistryThe history of chemistry represents a time span from ancient history to the present. By 1000 BC, civilizations used technologies that would eventually form the basis of the various branches of chemistry. Examples include the discovery of fire, extracting metals from ores, making pottery and glazes, fermenting beer and wine, extracting chemicals from plants for medicine and perfume, rendering fat into soap, making glass, and making alloys like bronze.
An Experimental Enquiry Concerning the Source of the Heat which is Excited by FrictionBenjamin Thompson#Mechanical equivalent of heatHistory of thermodynamics#Heat and friction (Rumford) "An Experimental Enquiry Concerning the Source of the Heat which is Excited by Friction" is a scientific paper by Benjamin Thompson, Count Rumford, which was published in the Philosophical Transactions of the Royal Society in 1798. The paper provided a substantial challenge to established theories of heat, and began the 19th century revolution in thermodynamics.
On the Equilibrium of Heterogeneous SubstancesIn the history of thermodynamics, On the Equilibrium of Heterogeneous Substances is a 300-page paper written by American chemical physicist Willard Gibbs. It is one of the founding papers in thermodynamics, along with German physicist Hermann von Helmholtz's 1882 paper "Thermodynamik chemischer Vorgänge." Together they form the foundation of chemical thermodynamics as well as a large part of physical chemistry. Gibbs's Equilibrium marked the beginning of chemical thermodynamics by integrating chemical, physical, electrical, and electromagnetic phenomena into a coherent system.
Chemical thermodynamicsChemical thermodynamics is the study of the interrelation of heat and work with chemical reactions or with physical changes of state within the confines of the laws of thermodynamics. Chemical thermodynamics involves not only laboratory measurements of various thermodynamic properties, but also the application of mathematical methods to the study of chemical questions and the spontaneity of processes. The structure of chemical thermodynamics is based on the first two laws of thermodynamics.
History of quantum mechanicsThe history of quantum mechanics is a fundamental part of the history of modern physics. The major chapters of this history begin with the emergence of quantum ideas to explain individual phenomena -- blackbody radiation, the photoelectric effect, solar emission spectra -- an era called the Old or Older quantum theories. The invention of wave mechanics by Schrodinger and expanded by many others triggers the "modern" era beginning around 1925.
Thermodynamic free energyIn thermodynamics, the thermodynamic free energy is one of the state functions of a thermodynamic system (the others being internal energy, enthalpy, entropy, etc.). The change in the free energy is the maximum amount of work that the system can perform in a process at constant temperature, and its sign indicates whether the process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy, it is not absolute but depends on the choice of a zero point.
History of physicsPhysics is a branch of science whose primary objects of study are matter and energy. Discoveries of physics find applications throughout the natural sciences and in technology. Physics today may be divided loosely into classical physics and modern physics. Elements of what became physics were drawn primarily from the fields of astronomy, optics, and mechanics, which were methodologically united through the study of geometry. These mathematical disciplines began in antiquity with the Babylonians and with Hellenistic writers such as Archimedes and Ptolemy.
Mechanical equivalent of heatIn the history of science, the mechanical equivalent of heat states that motion and heat are mutually interchangeable and that in every case, a given amount of work would generate the same amount of heat, provided the work done is totally converted to heat energy. The mechanical equivalent of heat was a concept that had an important part in the development and acceptance of the conservation of energy and the establishment of the science of thermodynamics in the 19th century.