Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
It is well-known that for any integral domain R, the Serre conjecture ring R(X), i.e., the localization of the univariate polynomial ring R[X] at monic polynomials, is a Bezout domain of Krull dimension
An integer program (IP) is a problem of the form min{f(x):Ax=b,l≤x≤u,x∈Zn}, where A∈Zm×n, b∈Zm, l,u∈Zn, and f:Zn→Z is a separable convex objective function.
The problem o ...
We propose and analyse randomized cubature formulae for the numerical integration of functions with respect to a given probability measure μ defined on a domain Γ⊆ℝ^d, in any dimension d. Each cubature formula is conceived to be exact on a given finite dim ...
Given a transitive permutation group, a fundamental object for studying its higher transitivity properties is the permutation action of its isotropy subgroup. We reverse this relationship and introduce a universal construction of infinite permutation group ...
Dimension is a fundamental property of objects and the space in which they are embedded. Yet ideal notions of dimension, as in Euclidean spaces, do not always translate to physical spaces, which can be constrained by boundaries and distorted by inhomogenei ...
We consider model order reduction of parameterized Hamiltonian systems describing nondissipative phenomena, like wave-type and transport dominated problems. The development of reduced basis methods for such models is challenged by two main factors: the ric ...
We analyze the accuracy of the discrete least-squares approximation of a function u in multivariate polynomial spaces PΛ:=span{y↦yν:ν∈Λ} with Λ⊂N0d over the domain Γ:=[−1,1]d, based on the s ...
Let K be a global field of characteristic not 2. The embedding problem for maximal tori in a classical group G can be described in terms of algebras with involution. The aim of this paper is to give an explicit description of the obstruction group to the H ...
The well-known "necklace splitting theorem" of Alon (1987) asserts that every k-colored necklace can be fairly split into q parts using at most t cuts, provided k(q - 1)
Embeddings of maximal tori in classical groups over fields of characteristic not 2 are the subject matter of several recent papers. The aim of the present paper is to give necessary and sufficient conditions for such an embedding to exist, when the base fi ...