Context-free grammarIn formal language theory, a context-free grammar (CFG) is a formal grammar whose production rules can be applied to a nonterminal symbol regardless of its context. In particular, in a context-free grammar, each production rule is of the form with a single nonterminal symbol, and a string of terminals and/or nonterminals ( can be empty). Regardless of which symbols surround it, the single nonterminal on the left hand side can always be replaced by on the right hand side.
Oberon (programming language)Oberon is a general-purpose programming language first published in 1987 by Niklaus Wirth and the latest member of the Wirthian family of ALGOL-like languages (Euler, ALGOL W, Pascal, Modula, and Modula-2). Oberon was the result of a concentrated effort to increase the power of Modula-2, the direct successor of Pascal, and simultaneously to reduce its complexity. Its principal new feature is the concept of type extension of record types.
Natural languageIn neuropsychology, linguistics, and philosophy of language, a natural language or ordinary language is any language that occurs naturally in a human community by a process of use, repetition, and change without conscious planning or premeditation. It can take different forms, namely either a spoken language or a sign language. Natural languages are distinguished from constructed and formal languages such as those used to program computers or to study logic. Natural language can be broadly defined as different from artificial and constructed languages, e.
Context-free languageIn formal language theory, a context-free language (CFL) is a language generated by a context-free grammar (CFG). Context-free languages have many applications in programming languages, in particular, most arithmetic expressions are generated by context-free grammars. Different context-free grammars can generate the same context-free language. Intrinsic properties of the language can be distinguished from extrinsic properties of a particular grammar by comparing multiple grammars that describe the language.
Obfuscation (software)In software development, obfuscation is the act of creating source or machine code that is difficult for humans or computers to understand. Like obfuscation in natural language, it may use needlessly roundabout expressions to compose statements. Programmers may deliberately obfuscate code to conceal its purpose (security through obscurity) or its logic or implicit values embedded in it, primarily, in order to prevent tampering, deter reverse engineering, or even to create a puzzle or recreational challenge for someone reading the source code.
Lisp machineLisp machines are general-purpose computers designed to efficiently run Lisp as their main software and programming language, usually via hardware support. They are an example of a high-level language computer architecture, and in a sense, they were the first commercial single-user workstations. Despite being modest in number (perhaps 7,000 units total as of 1988) Lisp machines commercially pioneered many now-commonplace technologies, including effective garbage collection, laser printing, windowing systems, computer mice, high-resolution bit-mapped raster graphics, computer graphic rendering, and networking innovations such as Chaosnet.
Expression (computer science)In computer science, an expression is a syntactic entity in a programming language that may be evaluated to determine its value. It is a combination of one or more constants, variables, functions, and operators that the programming language interprets (according to its particular rules of precedence and of association) and computes to produce ("to return", in a stateful environment) another value. This process, for mathematical expressions, is called evaluation.
ModulaThe Modula programming language is a descendant of the Pascal language. It was developed in Switzerland, at ETH Zurich, in the mid-1970s by Niklaus Wirth, the same person who designed Pascal. The main innovation of Modula over Pascal is a module system, used for grouping sets of related declarations into program units; hence the name Modula. The language is defined in a report by Wirth called Modula. A language for modular multiprogramming published 1976. Modula was first implemented by Wirth on a PDP-11.
Read–eval–print loopA read–eval–print loop (REPL), also termed an interactive toplevel or language shell, is a simple interactive computer programming environment that takes single user inputs, executes them, and returns the result to the user; a program written in a REPL environment is executed piecewise. The term usually refers to programming interfaces similar to the classic Lisp machine interactive environment. Common examples include command-line shells and similar environments for programming languages, and the technique is very characteristic of scripting languages.
Compile timeIn computer science, compile time (or compile-time) describes the time window during which a language's statements are converted into 0s and 1s for the computer to understand. The term is used as an adjective to describe concepts related to the context of program compilation, as opposed to concepts related to the context of program execution (runtime). For example, compile-time requirements are programming language requirements that must be met by source code before compilation and compile-time properties are properties of the program that can be reasoned about during compilation.