Concept

Bicentric quadrilateral

Summary
In Euclidean geometry, a bicentric quadrilateral is a convex quadrilateral that has both an incircle and a circumcircle. The radii and centers of these circles are called inradius and circumradius, and incenter and circumcenter respectively. From the definition it follows that bicentric quadrilaterals have all the properties of both tangential quadrilaterals and cyclic quadrilaterals. Other names for these quadrilaterals are chord-tangent quadrilateral and inscribed and circumscribed quadrilateral. It has also rarely been called a double circle quadrilateral and double scribed quadrilateral. If two circles, one within the other, are the incircle and the circumcircle of a bicentric quadrilateral, then every point on the circumcircle is the vertex of a bicentric quadrilateral having the same incircle and circumcircle. This is a special case of Poncelet's porism, which was proved by the French mathematician Jean-Victor Poncelet (1788–1867). Examples of bicentric quadrilaterals are squares, right kites, and isosceles tangential trapezoids. A convex quadrilateral ABCD with sides a, b, c, d is bicentric if and only if opposite sides satisfy Pitot's theorem for tangential quadrilaterals and the cyclic quadrilateral property that opposite angles are supplementary; that is, Three other characterizations concern the points where the incircle in a tangential quadrilateral is tangent to the sides. If the incircle is tangent to the sides AB, BC, CD, DA at W, X, Y, Z respectively, then a tangential quadrilateral ABCD is also cyclic if and only if any one of the following three conditions holds: WY is perpendicular to XZ The first of these three means that the contact quadrilateral WXYZ is an orthodiagonal quadrilateral. If E, F, G, H are the midpoints of WX, XY, YZ, ZW respectively, then the tangential quadrilateral ABCD is also cyclic if and only if the quadrilateral EFGH is a rectangle. According to another characterization, if I is the incenter in a tangential quadrilateral where the extensions of opposite sides intersect at J and K, then the quadrilateral is also cyclic if and only if ∠ JIK is a right angle.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.