FIN-415: Probability and stochastic calculusThis course gives an introduction to probability theory and stochastic calculus in discrete and continuous time. The fundamental notions and techniques introduced in this course have many applicatio
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
EE-411: Fundamentals of inference and learningThis is an introductory course in the theory of statistics, inference, and machine learning, with an emphasis on theoretical understanding & practical exercises. The course will combine, and alternat
FIN-417: Quantitative risk managementThis course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
CS-401: Applied data analysisThis course teaches the basic techniques, methodologies, and practical skills required to draw meaningful insights from a variety of data, with the help of the most acclaimed software tools in the dat
PHYS-338: Statistical physicsCe cours introduit les principes fondamentaux de la physique statistique, l'une des théories les plus fondamentales de la physique moderne.
EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.