Related concepts (10)
Probability theory
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a probability space, which assigns a measure taking values between 0 and 1, termed the probability measure, to a set of outcomes called the sample space.
Probability distribution
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). For instance, if X is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of X would take the value 0.5 (1 in 2 or 1/2) for X = heads, and 0.
Random variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' can be misleading as it is not actually random nor a variable, but rather it is a function from possible outcomes (e.g., the possible upper sides of a flipped coin such as heads and tails ) in a sample space (e.g., the set ) to a measurable space (e.g., in which 1 corresponding to and −1 corresponding to ), often to the real numbers.
Probability space
In probability theory, a probability space or a probability triple is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements: A sample space, , which is the set of all possible outcomes. An event space, which is a set of events, , an event being a set of outcomes in the sample space. A probability function, , which assigns each event in the event space a probability, which is a number between 0 and 1.
Elementary event
In probability theory, an elementary event, also called an atomic event or sample point, is an event which contains only a single outcome in the sample space. Using set theory terminology, an elementary event is a singleton. Elementary events and their corresponding outcomes are often written interchangeably for simplicity, as such an event corresponding to precisely one outcome. The following are examples of elementary events: All sets where if objects are being counted and the sample space is (the natural numbers).
Conditional probability
In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occurring with some sort of relationship with another event A. In this event, the event B can be analyzed by a conditional probability with respect to A. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(AB) or occasionally P_B(A).
Event (probability theory)
In probability theory, an event is a set of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. A single outcome may be an element of many different events, and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. An event consisting of only a single outcome is called an or an ; that is, it is a singleton set. An event is said to if contains the outcome of the experiment (or trial) (that is, if ).
Probability
Probability is the branch of mathematics concerning numerical descriptions of how likely an event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and 1, where, roughly speaking, 0 indicates impossibility of the event and 1 indicates certainty. The higher the probability of an event, the more likely it is that the event will occur. A simple example is the tossing of a fair (unbiased) coin.
Σ-algebra
In mathematical analysis and in probability theory, a σ-algebra (also σ-field) on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair is called a measurable space. The σ-algebras are a subset of the set algebras; elements of the latter only need to be closed under the union or intersection of finitely many subsets, which is a weaker condition.
Probability measure
In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as countable additivity. The difference between a probability measure and the more general notion of measure (which includes concepts like area or volume) is that a probability measure must assign value 1 to the entire probability space.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.