Pairwise independenceIn probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent. Pairwise independent random variables with finite variance are uncorrelated. A pair of random variables X and Y are independent if and only if the random vector (X, Y) with joint cumulative distribution function (CDF) satisfies or equivalently, their joint density satisfies That is, the joint distribution is equal to the product of the marginal distributions.
Probability measureIn mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as countable additivity. The difference between a probability measure and the more general notion of measure (which includes concepts like area or volume) is that a probability measure must assign value 1 to the entire probability space.
Problem of pointsThe problem of points, also called the problem of division of the stakes, is a classical problem in probability theory. One of the famous problems that motivated the beginnings of modern probability theory in the 17th century, it led Blaise Pascal to the first explicit reasoning about what today is known as an expected value. The problem concerns a game of chance with two players who have equal chances of winning each round. The players contribute equally to a prize pot, and agree in advance that the first player to have won a certain number of rounds will collect the entire prize.
Lévy's continuity theoremIn probability theory, Lévy’s continuity theorem, or Lévy's convergence theorem, named after the French mathematician Paul Lévy, connects convergence in distribution of the sequence of random variables with pointwise convergence of their characteristic functions. This theorem is the basis for one approach to prove the central limit theorem and is one of the major theorems concerning characteristic functions. Suppose we have If the sequence of characteristic functions converges pointwise to some function then the following statements become equivalent: Rigorous proofs of this theorem are available.
Fair coinIn probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin. In theoretical studies, the assumption that a coin is fair is often made by referring to an ideal coin. John Edmund Kerrich performed experiments in coin flipping and found that a coin made from a wooden disk about the size of a crown and coated on one side with lead landed heads (wooden side up) 679 times out of 1000.
Random variateIn probability and statistics, a random variate or simply variate is a particular outcome of a random variable; the random variates which are other outcomes of the same random variable might have different values (random numbers). A random deviate or simply deviate is the difference of a random variate with respect to the distribution central location (e.g., mean), often divided by the standard deviation of the distribution (i.e., as a standard score). Random variates are used when simulating processes driven by random influences (stochastic processes).
Cantor distributionThe Cantor distribution is the probability distribution whose cumulative distribution function is the Cantor function. This distribution has neither a probability density function nor a probability mass function, since although its cumulative distribution function is a continuous function, the distribution is not absolutely continuous with respect to Lebesgue measure, nor does it have any point-masses. It is thus neither a discrete nor an absolutely continuous probability distribution, nor is it a mixture of these.
Coin flippingCoin flipping, coin tossing, or heads or tails is the practice of throwing a coin in the air and checking which side is showing when it lands, in order to choose between two alternatives, heads or tails, sometimes used to resolve a dispute between two parties. It is a form of sortition which inherently has two possible outcomes. The party who calls the side that is facing up when the coin lands wins. Coin flipping was known to the Romans as navia aut caput ("ship or head"), as some coins had a ship on one side and the head of the emperor on the other.
OddsIn probability theory, odds provide a measure of the likelihood of a particular outcome. They are calculated as the ratio of the number of events that produce that outcome to the number that do not. Odds are commonly used in gambling and statistics. Odds also have a simple relation with probability: the odds of an outcome are the ratio of the probability that the outcome occurs to the probability that the outcome does not occur. In mathematical terms, where p is the probability of the outcome: where 1 – p is the probability that the outcome does not occur.