Odometry is the use of data from motion sensors to estimate change in position over time. It is used in robotics by some legged or wheeled robots to estimate their position relative to a starting location. This method is sensitive to errors due to the integration of velocity measurements over time to give position estimates. Rapid and accurate data collection, instrument calibration, and processing are required in most cases for odometry to be used effectively. The word odometry is composed of the Greek words odos (meaning "route") and metron (meaning "measure"). Suppose a robot has rotary encoders on its wheels or on its legged joints. It drives forward for some time and then would like to know how far it has traveled. It can measure how far the wheels have rotated, and if it knows the circumference of its wheels, compute the distance. Train operations are also frequent users of odometrics. Typically, a train gets an absolute position by passing over stationary sensors in the tracks, while odometry is used to calculate relative position while the train is between the sensors. Suppose that a simple robot has two wheels which can both move forward or reverse and that they are positioned parallel to one another, and equidistant from the center of the robot. Further, assume that each motor has a rotary encoder, and so one can determine if either wheel has traveled one "unit" forward or reverse along the floor. This unit is the ratio of the circumference of the wheel to the resolution of the encoder. If the left wheel were to move forward one unit while the right wheel remained stationary, then the right wheel acts as a pivot, and the left wheel traces a circular arc in the clockwise direction. Since one's unit of distance is usually tiny, one can approximate by assuming that this arc is a line. Thus, the original position of the left wheel, the final position of the left wheel, and the position of the right wheel form a triangle, which one can call A.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.