Summary
Time delay neural network (TDNN) is a multilayer artificial neural network architecture whose purpose is to 1) classify patterns with shift-invariance, and 2) model context at each layer of the network. Shift-invariant classification means that the classifier does not require explicit segmentation prior to classification. For the classification of a temporal pattern (such as speech), the TDNN thus avoids having to determine the beginning and end points of sounds before classifying them. For contextual modelling in a TDNN, each neural unit at each layer receives input not only from activations/features at the layer below, but from a pattern of unit output and its context. For time signals each unit receives as input the activation patterns over time from units below. Applied to two-dimensional classification (images, time-frequency patterns), the TDNN can be trained with shift-invariance in the coordinate space and avoids precise segmentation in the coordinate space. The TDNN was introduced in the late 1980s and applied to a task of phoneme classification for automatic speech recognition in speech signals where the automatic determination of precise segments or feature boundaries was difficult or impossible. Because the TDNN recognizes phonemes and their underlying acoustic/phonetic features, independent of position in time, it improved performance over static classification. It was also applied to two-dimensional signals (time-frequency patterns in speech, and coordinate space pattern in OCR). In 1990, Yamaguchi et al. introduced the concept of max pooling. They did so by combining TDNNs with max pooling in order to realize a speaker independent isolated word recognition system. The Time Delay Neural Network, like other neural networks, operates with multiple interconnected layers of perceptrons, and is implemented as a feedforward neural network. All neurons (at each layer) of a TDNN receive inputs from the outputs of neurons at the layer below but with two differences: Unlike regular Multi-Layer perceptrons, all units in a TDNN, at each layer, obtain inputs from a contextual window of outputs from the layer below.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.