Concept

Utah teapot

The Utah teapot, or the Newell teapot, is a 3D test model that has become a standard reference object and an in-joke within the computer graphics community. It is a mathematical model of an ordinary Melitta-brand teapot that appears solid with a nearly rotationally symmetrical body. Using a teapot model is considered the 3D equivalent of a "Hello, World!" program, a way to create an easy 3D scene with a somewhat complex model acting as the basic geometry for a scene with a light setup. Some programming libraries, such as the OpenGL Utility Toolkit, even have functions dedicated to drawing teapots. The teapot model was created in 1975 by early computer graphics researcher Martin Newell, a member of the pioneering graphics program at the University of Utah. It was one of the first to be modeled using bézier curves rather than precisely measured. For his work, Newell needed a simple mathematical model of a familiar object. His wife, Sandra Newell, suggested modelling their tea set since they were sitting down for tea at the time. He sketched the teapot free-hand using graph paper and a pencil. Following that, he went back to the computer laboratory and edited bézier control points on a Tektronix storage tube, again by hand. The teapot shape contained a number of elements that made it ideal for the graphics experiments of the time: it was round, contained saddle points, had a genus greater than zero because of the hole in the handle, could project a shadow on itself, and could be displayed accurately without a surface texture. Newell made the mathematical data that described the teapot's geometry (a set of three-dimensional coordinates) publicly available, and soon other researchers began to use the same data for their computer graphics experiments. These researchers needed something with roughly the same characteristics that Newell had, and using the teapot data meant they did not have to laboriously enter geometric data for some other object.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
Related lectures (11)
Angle at the Center & Power of a Point
Explores the angle at the center and the power of a point relative to a circle, demonstrating key theorems and geometric concepts.
Designing Pavilion Structures
Explores the design process of pavilion structures, emphasizing the creation of a topological polyhedron as the foundation document.
Dimensionality Reduction: PCA & t-SNE
Explores PCA and t-SNE for reducing dimensions and visualizing high-dimensional data effectively.
Show more
Related publications (10)

Geodesic Convolutional Shape Optimization

Pascal Fua, François Fleuret, Pierre Bruno Baqué, Edoardo Remelli

Aerodynamic shape optimization has many industrial applications. Existing methods, however, are so computationally demanding that typical engineering practices are to either simply try a limited number of hand-designed shapes or restrict oneself to shapes ...
2018

Ramsey-mode Rb cell clock demonstration with a 3D-printed microwave cavity

Anja Skrivervik

We demonstrate operation of a Ramey-mode Rb vapor-cell atomic clock based on a microwave cavity realized by additive manufacturing (3D-printing). The cavity design is based on a loop-gap approach and its critical electrode structure is realized in one mono ...
2018
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.