In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry, who studied the topic in the early 19th century.
An example where Henry's law is at play is in the depth-dependent dissolution of oxygen and nitrogen in the blood of underwater divers that changes during decompression, leading to decompression sickness. An everyday example is given by one's experience with carbonated soft drinks, which contain dissolved carbon dioxide. Before opening, the gas above the drink in its container is almost pure carbon dioxide, at a pressure higher than atmospheric pressure. After the bottle is opened, this gas escapes, moving the partial pressure of carbon dioxide above the liquid to be much lower, resulting in degassing as the dissolved carbon dioxide comes out of the solution.
In his 1803 publication about the quantity of gases absorbed by water, William Henry described the results of his experiments:
... water takes up, of gas condensed by one, two, or more additional atmospheres, a quantity which, ordinarily compressed, would be equal to twice, thrice, &c. the volume absorbed under the common pressure of the atmosphere.
Charles Coulston Gillispie states that John Dalton "supposed that the separation of gas particles one from another in the vapor phase bears the ratio of a small whole number to their interatomic distance in solution. Henry's law follows as a consequence if this ratio is a constant for each gas at a given temperature."
Under high pressure, solubility of CO2 increases. On opening the bottle to atmospheric pressure, solubility decreases and the gas bubbles are released from the liquid.
It is often noted that beer served by gravity (that is, directly from a tap in the cask) is less heavily carbonated than the same beer served via a hand-pump (or beer-engine).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
Cet enseignement vise l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimiques. Le cours et les exercices fournissent la méthodologie
Underwater diving, as a human activity, is the practice of descending below the water's surface to interact with the environment. It is also often referred to as diving, an ambiguous term with several possible meanings, depending on context. Immersion in water and exposure to high ambient pressure have physiological effects that limit the depths and duration possible in ambient pressure diving.
In chemistry, an ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes. The vapor pressures of the solvent and solute obey Raoult's law and Henry's law, respectively, and the activity coefficient (which measures deviation from ideality) is equal to one for each component.
In chemistry, carbonic acid is an organic compound with the chemical formula . The molecule rapidly converts to water and carbon dioxide in the presence of water. However, in the absence of water, it is (contrary to popular belief) quite stable at room temperature. The interconversion of carbon dioxide and carbonic acid is related to the breathing cycle of animals and the acidification of natural waters. In biochemistry and physiology, the name "carbonic acid" is sometimes incorrectly applied to aqueous solutions of carbon dioxide.
The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol ...
In a recent article entitled "Solubility Parameter of Carbon Dioxide-an Enigma"[1], Marcus reported the literature values for the solubility parameter of liquid carbon dioxide (CO2) at 298 K with discrepancies as large as 200%. An analogous article on ioni ...
This study reports the development of a new Ti-Zr-Mn-based AB 2 type hydrogen storage alloys for a two-stage metal hydride hydrogen compressor (MHHC). The hydrogen storage alloys are designed to compress hydrogen from 35 to 865 bar within a temperature dif ...