Concept

Terminal Doppler Weather Radar

Summary
Terminal Doppler Weather Radar (TDWR) is a Doppler weather radar system with a three-dimensional "pencil beam" used primarily for the detection of hazardous wind shear conditions, precipitation, and winds aloft on and near major airports situated in climates with great exposure to thunderstorms in the United States. As of 2011, all were in-service with 45 operational radars, some covering multiple airports in major metropolitan locations, across the United States & Puerto Rico. Several similar weather radars have also been sold to other countries such as China (Hong Kong). Funded by the United States Federal Aviation Administration (FAA), TDWR technology was developed in the early 1990s at Lincoln Laboratory, part of the Massachusetts Institute of Technology, to assist air traffic controllers by providing real-time wind shear detection and high-resolution precipitation data. The primary advantage of TDWRs over previous weather radars is that it has a finer range resolution—meaning it can see smaller areas of the atmosphere. The reason for the resolution is that the TDWR has a narrower beam than traditional radar systems, and that it uses a set of algorithms to reduce ground clutter. TDWR uses a carrier wave in the frequency band of 5600–5650 MHz (5 cm wavelength), with a narrow beam and angular resolution of 0.5 degrees, and has a peak power of 250 kW. In reflectivity, the resolution in distance is within of the radar and from to to the radar. The reason for this difference is that the width resolution being angular, at larger range the width of the beam becomes quite large and to obtain a better averaging of data in a resolution volume, one has to increase the number of range pulse bins. This cut off is arbitrarily set for the software at . In radial velocities, data are available up to from the radar with the full angular resolution of 0.5 degrees and range resolution of . Because of the Pulse Repetition Frequency (PRF) used, there is aliasing and the maximum non-ambiguous velocity is . TDWR can perform near-surface scans at a 0.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.