Concept

Anemophily

Summary
Anemophily or wind pollination is a form of pollination whereby pollen is distributed by wind. Almost all gymnosperms are anemophilous, as are many plants in the order Poales, including grasses, sedges, and rushes. Other common anemophilous plants are oaks, pecans, pistachios, sweet chestnuts, alders and members of the family Juglandaceae (hickory or walnut family). Approximately 12% of plants across the globe are pollinated by anemophily, including cereal crops like rice and corn and other prominent crop plants like wheat, rye, barley, and oats. In addition, many pines, spruces, and firs are wind-pollinated. Features of the wind-pollination syndrome include a lack of scent production, a lack of showy floral parts (resulting in small, inconspicuous flowers), reduced production of nectar, and the production of enormous numbers of pollen grains. This distinguishes them from entomophilous and zoophilous species (whose pollen is spread by insects and vertebrates respectively). Anemophilous pollen grains are smooth, light, and non-sticky, so that they can be transported by air currents. Wind-pollinating plants have no predisposition to attract pollinating organisms. They freely expel a myriad of these pollen grains, and only a small percentage of them ends up captured by the female floral structures on wind-pollinated plants. They are typically in diameter, although the pollen grains of Pinus species can be much larger and much less dense. Anemophilous plants possess lengthy, well-exposed stamens to catch and distribute pollen. These stamens are exposed to wind currents and also have large, feathery stigma to easily trap airborne pollen grains. Pollen from anemophilous plants tends to be smaller and lighter than pollen from entomophilous ones, with very low nutritional value to insects due to their low protein content. However, insects sometimes gather pollen from staminate anemophilous flowers at times when higher-protein pollens from entomophilous flowers are scarce. Anemophilous pollens may also be inadvertently captured by bees' electrostatic field.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.