A NoSQL (originally referring to "non-SQL" or "non-relational") database provides a mechanism for storage and retrieval of data that is modeled in means other than the tabular relations used in relational databases. Such databases have existed since the late 1960s, but the name "NoSQL" was only coined in the early 21st century, triggered by the needs of Web 2.0 companies. NoSQL databases are increasingly used in big data and real-time web applications. NoSQL systems are also sometimes called Not only SQL to emphasize that they may support SQL-like query languages or sit alongside SQL databases in polyglot-persistent architectures. Motivations for this approach include simplicity of design, simpler "horizontal" scaling to clusters of machines (which is a problem for relational databases), finer control over availability, and limiting the object-relational impedance mismatch. The data structures used by NoSQL databases (e.g. key–value pair, wide column, graph, or document) are different from those used by default in relational databases, making some operations faster in NoSQL. The particular suitability of a given NoSQL database depends on the problem it must solve. Sometimes the data structures used by NoSQL databases are also viewed as "more flexible" than relational database tables. Many NoSQL stores compromise consistency (in the sense of the CAP theorem) in favor of availability, partition tolerance, and speed. Barriers to the greater adoption of NoSQL stores include the use of low-level query languages (instead of SQL, for instance), lack of ability to perform ad hoc joins across tables, lack of standardized interfaces, and huge previous investments in existing relational databases. Most NoSQL stores lack true ACID transactions, although a few databases have made them central to their designs. Instead, most NoSQL databases offer a concept of "eventual consistency", in which database changes are propagated to all nodes "eventually" (typically within milliseconds), so queries for data might not return updated data immediately or might result in reading data that is not accurate, a problem known as stale read.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
CS-300: Data-intensive systems
This course covers the data management system design concepts using a hands-on approach.
CS-723: Topics in Machine Learning Systems
This course will cover the latest technologies, platforms and research contributions in the area of machine learning systems. The students will read, review and present papers from recent venues acros
COM-490: Large-scale data science for real-world data
This hands-on course teaches the tools & methods used by data scientists, from researching solutions to scaling up prototypes to Spark clusters. It exposes the students to the entire data science pipe
Show more
Related lectures (48)
Data Wrangling with Hadoop
Covers data wrangling techniques using Hadoop, focusing on row versus column-oriented databases, popular storage formats, and HBase-Hive integration.
Integrating Scalable Data Storage and Map Reduce Processing with Hadoop
Covers the integration of scalable data storage and map reduce processing using Hadoop, including HDFS, Hive, Parquet, ORC, Spark, and HBase.
Relational Model: Basics
Introduces the relational model, SQL, keys, integrity constraints, ER translation, weak entities, ISA hierarchies, and SQL vs. noSQL.
Show more
Related publications (59)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.