Constructivism (philosophy of mathematics)In the philosophy of mathematics, constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then deriving a contradiction from that assumption. Such a proof by contradiction might be called non-constructive, and a constructivist might reject it.
Disjunction and existence propertiesIn mathematical logic, the disjunction and existence properties are the "hallmarks" of constructive theories such as Heyting arithmetic and constructive set theories (Rathjen 2005). The disjunction property is satisfied by a theory if, whenever a sentence A ∨ B is a theorem, then either A is a theorem, or B is a theorem. The existence property or witness property is satisfied by a theory if, whenever a sentence (∃x)A(x) is a theorem, where A(x) has no other free variables, then there is some term t such that the theory proves A(t).
Modulus of convergenceIn real analysis, a branch of mathematics, a modulus of convergence is a function that tells how quickly a convergent sequence converges. These moduli are often employed in the study of computable analysis and constructive mathematics. If a sequence of real numbers converges to a real number , then by definition, for every real there is a natural number such that if then . A modulus of convergence is essentially a function that, given , returns a corresponding value of . Suppose that is a convergent sequence of real numbers with limit .
Classical mathematicsIn the foundations of mathematics, classical mathematics refers generally to the mainstream approach to mathematics, which is based on classical logic and ZFC set theory. It stands in contrast to other types of mathematics such as constructive mathematics or predicative mathematics. In practice, the most common non-classical systems are used in constructive mathematics. Classical mathematics is sometimes attacked on philosophical grounds, due to constructivist and other objections to the logic, set theory, etc.
Intermediate value theoremIn mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval , then it takes on any given value between and at some point within the interval. This has two important corollaries: If a continuous function has values of opposite sign inside an interval, then it has a root in that interval (Bolzano's theorem). The of a continuous function over an interval is itself an interval.
Cantor's diagonal argumentIn set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers. Such sets are now known as uncountable sets, and the size of infinite sets is now treated by the theory of cardinal numbers which Cantor began.