Constructive set theoryAxiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories. In addition to rejecting the principle of excluded middle (), constructive set theories often require some logical quantifiers in their axioms to be set bounded, motivated by results tied to impredicativity.
Heyting arithmeticIn mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it. Heyting arithmetic can be characterized just like the first-order theory of Peano arithmetic , except that it uses the intuitionistic predicate calculus for inference. In particular, this means that the double-negation elimination principle, as well as the principle of the excluded middle , do not hold.
Markov's principleMarkov's principle, named after Andrey Markov Jr, is a conditional existence statement for which there are many equivalent formulations, as discussed below. The principle is logically valid classically, but not in intuitionistic constructive mathematics. However, many particular instances of it are nevertheless provable in a constructive context as well. The principle was first studied and adopted by the Russian school of constructivism, together with choice principles and often with a realizability perspective on the notion of mathematical function.
Reverse mathematicsReverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones. The reverse mathematics program was foreshadowed by results in set theory such as the classical theorem that the axiom of choice and Zorn's lemma are equivalent over ZF set theory.
Indecomposability (intuitionistic logic)In intuitionistic analysis and in computable analysis, indecomposability or indivisibility (Unzerlegbarkeit, from the adjective unzerlegbar) is the principle that the continuum cannot be partitioned into two nonempty pieces. This principle was established by Brouwer in 1928 using intuitionistic principles, and can also be proven using Church's thesis. The analogous property in classical analysis is the fact that every continuous function from the continuum to {0,1} is constant.
Completeness of the real numbersCompleteness is a property of the real numbers that, intuitively, implies that there are no "gaps" (in Dedekind's terminology) or "missing points" in the real number line. This contrasts with the rational numbers, whose corresponding number line has a "gap" at each irrational value. In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number.
Effective toposIn mathematics, the effective topos introduced by captures the mathematical idea of effectivity within the framework. The topos is based on the partial combinatory algebra given by Kleene's first algebra . In Kleene's notion of recursive realizability, any predicate is assigned realizing numbers, i.e. a subset of . The extremal propositions are and , realized by and . However in general, this process assigns more data to a proposition than just a binary truth value.
Constructive proofIn mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or pure existence theorem), which proves the existence of a particular kind of object without providing an example. For avoiding confusion with the stronger concept that follows, such a constructive proof is sometimes called an effective proof.
Limited principle of omniscienceIn constructive mathematics, the limited principle of omniscience (LPO) and the lesser limited principle of omniscience (LLPO) are axioms that are nonconstructive but are weaker than the full law of the excluded middle. They are used to gauge the amount of nonconstructivity required for an argument, as in constructive reverse mathematics. These principles are also related to weak counterexamples in the sense of Brouwer. The limited principle of omniscience states : LPO: For any sequence , , ...
IntuitionismIn the philosophy of mathematics, intuitionism, or neointuitionism (opposed to preintuitionism), is an approach where mathematics is considered to be purely the result of the constructive mental activity of humans rather than the discovery of fundamental principles claimed to exist in an objective reality. That is, logic and mathematics are not considered analytic activities wherein deep properties of objective reality are revealed and applied, but are instead considered the application of internally consistent methods used to realize more complex mental constructs, regardless of their possible independent existence in an objective reality.