Retrograde motion in astronomy is, in general, orbital or rotational motion of an object in the direction opposite the rotation of its primary, that is, the central object (right figure). It may also describe other motions such as precession or nutation of an object's rotational axis. Prograde or direct motion is more normal motion in the same direction as the primary rotates. However, "retrograde" and "prograde" can also refer to an object other than the primary if so described. The direction of rotation is determined by an inertial frame of reference, such as distant fixed stars.
In the Solar System, the orbits around the Sun of all planets and most other objects, except many comets, are prograde. They orbit around the Sun in the same direction as the sun rotates about its axis, which is counterclockwise when observed from above the Sun's north pole. Except for Venus and Uranus, planetary rotations around their axis are also prograde. Most natural satellites have prograde orbits around their planets. Prograde satellites of Uranus orbit in the direction Uranus rotates, which is retrograde to the Sun. Nearly all regular satellites are tidally locked and thus have prograde rotation. Retrograde satellites are generally small and distant from their planets, except Neptune's satellite Triton, which is large and close. All retrograde satellites are thought to have formed separately before being captured by their planets.
Most low-inclination artificial satellites of Earth have been placed in a prograde orbit, because in this situation less propellant is required to reach the orbit.
When a galaxy or a planetary system forms, its material takes a shape similar to that of a disk. Most of the material orbits and rotates in one direction. This uniformity of motion is due to the collapse of a gas cloud. The nature of the collapse is explained by conservation of angular momentum. In 2010 the discovery of several hot Jupiters with backward orbits called into question the theories about the formation of planetary systems.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids), as well as natural satellites and minor-planet moons. Axial tilt The International Astronomical Union (IAU) defines the north pole of a planet or any of its satellites in the Solar System as the planetary pole that is in the same celestial hemisphere, relative to the invariable plane of the Solar System, as Earth's north pole.
Neptune is the eighth planet from the Sun and the farthest IAU-recognized planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth, and slightly more massive than its near-twin Uranus. Neptune is denser and physically smaller than Uranus because its greater mass causes more gravitational compression of its atmosphere. Being composed primarily of gases and liquids, it has no well-defined solid surface.
A primary (also called a gravitational primary, primary body, or central body) is the main physical body of a gravitationally bound, multi-object system. This object constitutes most of that system's mass and will generally be located near the system's barycenter. In the Solar System, the Sun is the primary for all objects that orbit the star. In the same way, the primary of all satellites (be they natural satellites (moons) or artificial ones) is the planet they orbit.
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Resonant sloshing in circular cylinders was studied by Faltinsen et al. (J. Fluid Mech., vol. 804, 2016, pp. 608-645), whose theory was used to describe steady-state resonant waves due to a time-harmonic container's elliptic orbits. In the limit of longitu ...
CAMBRIDGE UNIV PRESS2023
A new electrically driven gas booster is described as an alternative to the classical air-driven gas boosters known for their poor energetic efficiency. These boosters are used in small scale Hydrogen storage facilities and in refueling stations for Hydrog ...
We use our new light curves, along with historical data, to determine the rotation state, photometric properties, and convex shape models of the targets of the Lucy mission (3548) Eurybates and (21900) Orus. We determine a retrograde spin for both targets, ...