Concept

Mechanical similarity

Summary
In classical mechanics, a branch overlapping in physics and applied mathematics, mechanical similarity occurs when the potential energy is a homogeneous function of the positions of the particles, with the result that the trajectories of the particles in the system are geometrically similar paths, differing in size but retaining shape. Consider a system of any number of particles and assume that the interaction energy between any pair of particles has the form :U(r)\propto r^k ,, where r is the distance between the two particles. In such a case the solutions to the equations of motion are a series of geometrically similar paths, and the times of motion t at corresponding points on the paths are related to the linear size l of the path by :t \propto l^{1-k/2}. Examples
  • The period of small oscillations (k = 2) is independent of their amplitude.
  • The time of free fall under gravity (k = 1) is proportional to the square root of the initial alti
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading