Weighted least squares (WLS), also known as weighted linear regression, is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression. WLS is also a specialization of generalized least squares, when all the off-diagonal entries of the covariance matrix of the errors, are null. The fit of a model to a data point is measured by its residual, , defined as the difference between a measured value of the dependent variable, and the value predicted by the model, : If the errors are uncorrelated and have equal variance, then the function is minimised at , such that . The Gauss–Markov theorem shows that, when this is so, is a best linear unbiased estimator (BLUE). If, however, the measurements are uncorrelated but have different uncertainties, a modified approach might be adopted. Aitken showed that when a weighted sum of squared residuals is minimized, is the BLUE if each weight is equal to the reciprocal of the variance of the measurement The gradient equations for this sum of squares are which, in a linear least squares system give the modified normal equations, When the observational errors are uncorrelated and the weight matrix, W=Ω−1, is diagonal, these may be written as If the errors are correlated, the resulting estimator is the BLUE if the weight matrix is equal to the inverse of the variance-covariance matrix of the observations. When the errors are uncorrelated, it is convenient to simplify the calculations to factor the weight matrix as . The normal equations can then be written in the same form as ordinary least squares: where we define the following scaled matrix and vector: This is a type of whitening transformation; the last expression involves an entrywise division. For non-linear least squares systems a similar argument shows that the normal equations should be modified as follows. Note that for empirical tests, the appropriate W is not known for sure and must be estimated.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (23)
MATH-341: Linear models
Regression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
EE-613: Machine Learning for Engineers
The objective of this course is to give an overview of machine learning techniques used for real-world applications, and to teach how to implement and use them in practice. Laboratories will be done i
EE-607: Advanced Methods for Model Identification
This course introduces the principles of model identification for non-linear dynamic systems, and provides a set of possible solution methods that are thoroughly characterized in terms of modelling as
Show more
Related concepts (13)
Linear regression
In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.
Gauss–Markov theorem
In statistics, the Gauss–Markov theorem (or simply Gauss theorem for some authors) states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero. The errors do not need to be normal, nor do they need to be independent and identically distributed (only uncorrelated with mean zero and homoscedastic with finite variance).
Generalized least squares
In statistics, generalized least squares (GLS) is a method used to estimate the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in the regression model. Least squares and weighted least squares may need to be more statistically efficient and prevent misleading inferences. GLS was first described by Alexander Aitken in 1935. In standard linear regression models one observes data on n statistical units.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.