Summary
In statistics, the Gauss–Markov theorem (or simply Gauss theorem for some authors) states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero. The errors do not need to be normal, nor do they need to be independent and identically distributed (only uncorrelated with mean zero and homoscedastic with finite variance). The requirement that the estimator be unbiased cannot be dropped, since biased estimators exist with lower variance. See, for example, the James–Stein estimator (which also drops linearity), ridge regression, or simply any degenerate estimator. The theorem was named after Carl Friedrich Gauss and Andrey Markov, although Gauss' work significantly predates Markov's. But while Gauss derived the result under the assumption of independence and normality, Markov reduced the assumptions to the form stated above. A further generalization to non-spherical errors was given by Alexander Aitken. Suppose we have, in matrix notation, the linear relationship expanding to, where are non-random but unobservable parameters, are non-random and observable (called the "explanatory variables"), are random, and so are random. The random variables are called the "disturbance", "noise" or simply "error" (will be contrasted with "residual" later in the article; see errors and residuals in statistics). Note that to include a constant in the model above, one can choose to introduce the constant as a variable with a newly introduced last column of X being unity i.e., for all . Note that though as sample responses, are observable, the following statements and arguments including assumptions, proofs and the others assume under the only condition of knowing but not The Gauss–Markov assumptions concern the set of error random variables, : They have mean zero: They are homoscedastic, that is all have the same finite variance: for all and Distinct error terms are uncorrelated: A linear estimator of is a linear combination in which the coefficients are not allowed to depend on the underlying coefficients , since those are not observable, but are allowed to depend on the values , since these data are observable.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.