AntiprotonThe antiproton, _Antiproton, (pronounced p-bar) is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy. The existence of the antiproton with electric charge of -1e, opposite to the electric charge of +1e of the proton, was predicted by Paul Dirac in his 1933 Nobel Prize lecture.
Parton (particle physics)In particle physics, the parton model is a model of hadrons, such as protons and neutrons, proposed by Richard Feynman. It is useful for interpreting the cascades of radiation (a parton shower) produced from quantum chromodynamics (QCD) processes and interactions in high-energy particle collisions. Parton showers are simulated extensively in Monte Carlo event generators, in order to calibrate and interpret (and thus understand) processes in collider experiments.
Lattice QCDLattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum QCD is recovered. Analytic or perturbative solutions in low-energy QCD are hard or impossible to obtain due to the highly nonlinear nature of the strong force and the large coupling constant at low energies.
Particle Data GroupThe Particle Data Group (PDG) is an international collaboration of particle physicists that compiles and reanalyzes published results related to the properties of particles and fundamental interactions. It also publishes reviews of theoretical results that are phenomenologically relevant, including those in related fields such as cosmology. The PDG currently publishes the Review of Particle Physics and its pocket version, the Particle Physics Booklet, which are printed biennially as books, and updated annually via the World Wide Web.
Delta baryonThe Delta baryons (or Δ baryons, also called Delta resonances) are a family of subatomic particle made of three up or down quarks (u or d quarks), the same constituent quarks that make up the more familiar protons and neutrons. Four closely related Δ baryons exist: _Delta++ (constituent quarks: uuu), _Delta+ (uud), _Delta0 (udd), and _Delta- (ddd), which respectively carry an electric charge of +2e, +1e, 0e, and -1e. The Δ baryons have a mass of about 1232MeV/c2; their third component of isospin and they are required to have an intrinsic spin of 3 /2 or higher (half-integer units).
TetraquarkA tetraquark, in particle physics, is an exotic meson composed of four valence quarks. A tetraquark state has long been suspected to be allowed by quantum chromodynamics, the modern theory of strong interactions. A tetraquark state is an example of an exotic hadron which lies outside the conventional quark model classification. A number of different types of tetraquark have been observed. Several tetraquark candidates have been reported by particle physics experiments in the 21st century.
Sakata modelIn particle physics, the Sakata model of hadrons was a precursor to the quark model. It proposed that the proton, neutron, and Lambda baryon were elementary particles (sometimes referred to as sakatons), and that all other known hadrons were made of them. The model was proposed by Shoichi Sakata in 1956. The model was successful in explaining many features of hadrons, but was supplanted by the quark model as the understanding of hadrons progressed.