Projection (set theory)In set theory, a projection is one of two closely related types of functions or operations, namely: A set-theoretic operation typified by the th projection map, written that takes an element of the Cartesian product to the value A function that sends an element to its equivalence class under a specified equivalence relation or, equivalently, a surjection from a set to another set. The function from elements to equivalence classes is a surjection, and every surjection corresponds to an equivalence relation under which two elements are equivalent when they have the same image.
Index setIn mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set A may be indexed or labeled by means of the elements of a set J, then J is an index set. The indexing consists of a surjective function from J onto A, and the indexed collection is typically called an indexed family, often written as {Aj}j∈J. An enumeration of a set S gives an index set , where f : J → S is the particular enumeration of S.
Axiom of power setIn mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory. In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: where y is the power set of x, . In English, this says: Given any set x, there is a set such that, given any set z, this set z is a member of if and only if every element of z is also an element of x. More succinctly: for every set , there is a set consisting precisely of the subsets of .
Ultrafilter on a setIn the mathematical field of set theory, an ultrafilter on a set is a maximal filter on the set In other words, it is a collection of subsets of that satisfies the definition of a filter on and that is maximal with respect to inclusion, in the sense that there does not exist a strictly larger collection of subsets of that is also a filter. (In the above, by definition a filter on a set does not contain the empty set.) Equivalently, an ultrafilter on the set can also be characterized as a filter on with the property that for every subset of either or its complement belongs to the ultrafilter.
Universe (mathematics)In mathematics, and particularly in set theory, , type theory, and the foundations of mathematics, a universe is a collection that contains all the entities one wishes to consider in a given situation. In set theory, universes are often classes that contain (as elements) all sets for which one hopes to prove a particular theorem. These classes can serve as inner models for various axiomatic systems such as ZFC or Morse–Kelley set theory. Universes are of critical importance to formalizing concepts in inside set-theoretical foundations.
Projection (mathematics)In mathematics, a projection is an idempotent mapping of a set (or other mathematical structure) into a subset (or sub-structure). In this case, idempotent means that projecting twice is the same as projecting once. The restriction to a subspace of a projection is also called a projection, even if the idempotence property is lost. An everyday example of a projection is the casting of shadows onto a plane (sheet of paper): the projection of a point is its shadow on the sheet of paper, and the projection (shadow) of a point on the sheet of paper is that point itself (idempotency).
Axiom schema of specificationIn many popular versions of axiomatic set theory, the axiom schema of specification, also known as the axiom schema of separation, subset axiom scheme or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set. Some mathematicians call it the axiom schema of comprehension, although others use that term for unrestricted comprehension, discussed below.
Product (category theory)In , the product of two (or more) in a is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces. Essentially, the product of a family of objects is the "most general" object which admits a morphism to each of the given objects.
TupleIn mathematics, a tuple is a finite sequence or ordered list of numbers or, more generally, mathematical objects, which are called the elements of the tuple. An n-tuple is a tuple of n elements, where n is a non-negative integer. There is only one 0-tuple, called the empty tuple. A 1-tuple and a 2-tuple are commonly called respectively a singleton and an ordered pair. Tuple may be formally defined from ordered pairs by recurrence by starting from ordered pairs; indeed, a n-tuple can be identified with the ordered pair of its (n − 1) first elements and its nth element.
Complement (set theory)In set theory, the complement of a set A, often denoted by A∁ (or A′), is the set of elements not in A. When all sets in the universe, i.e. all sets under consideration, are considered to be members of a given set U, the absolute complement of A is the set of elements in U that are not in A. The relative complement of A with respect to a set B, also termed the set difference of B and A, written is the set of elements in B that are not in A.