In mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set A may be indexed or labeled by means of the elements of a set J, then J is an index set. The indexing consists of a surjective function from J onto A, and the indexed collection is typically called an indexed family, often written as {Aj}j∈J. An enumeration of a set S gives an index set , where f : J → S is the particular enumeration of S. Any countably infinite set can be (injectively) indexed by the set of natural numbers . For , the indicator function on r is the function given by The set of all such indicator functions, , is an uncountable set indexed by . In computational complexity theory and cryptography, an index set is a set for which there exists an algorithm I that can sample the set efficiently; e.g., on input 1n, I can efficiently select a poly(n)-bit long element from the set.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.